首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
Mössbauer effect and magnetization measurements were employed in order to study the static and especially the dynamic magnetic properties of the nearly Heisenberg ferromagnet EuO near its Curie temperature,T c=69.2 °K. The critical exponent β of the spontaneous magnetization was determined to be β=0.34±0.02. It was shown that critical slowing down of spin fluctuations takes place nearT c with spin relaxation times between 7×10?11 sec (T=1.01T c) and 1.5×10?1 sec (T=1.03T c). The experimental values of the relaxation time were found to be in satisfactory agreement with theoretically computed ones. Just belowT c the Mössbauer spectra exhibit relaxation effects, which are characteristic for the occurence of critical super-paramagnetism. Investigations of several samples indicated quantitatively, that critical superparamagnetism has its origin in the non ideal composition of the real crystal.  相似文献   

2.
The contributions of Co2+ and Nb4+ ions to the high-frequency dynamic magnetic susceptibility of the Co2[Nb(CN)8] · 8H2O molecular magnet in the paramagnetic state at T > 12 K are separated. It is found that the ferromagnetic ordering, which leads to the reconstruction of the electron paramagnetic resonance spectrum into the ferromagnetic resonance spectrum, occurs at T < 12 K. The influence of zeolite water on the spectra of the paramagnetic and ferromagnetic resonances is found. Dehydration leads to a decrease in the time of the spin relaxation of the ferromagnetic system from 50 ps to 17 ps at T = 4 K and to the variation in the temperature dependences of the widths of the lines and g factors in the electron spin resonance spectra.  相似文献   

3.
With an original modulation technique, the Gd3+ electron spin-lattice relaxation has been investigated in normal and superconducting states of YBa2Cu3O6+x (123) and YBa2Cu4O8 (124) compounds doped with 1% Gd. In the 123 sample withx = 0.9T c = 90 K), theT 1 behavior within 50 <T< 200 K reveals the [1 ? tanh2(Δ/2kT)]/T dependence typical of a spin gap opening with Δ ≈ 240 K. Below 50 K, the exponential slowing down ofT 1 is limited by the Korringa-like behaviorT 1 T = const); the same Korringa-like law is found in the 123 sample withx = 0.59 (T c = 56 K) within the total 4.2–200 K temperature range. This is interpreted in terms of microscopic separation of the normal and superconducting phases allowing for the electron spin cross-relaxation between them. In the 124 sample (T c = 82 K), the Gd3+ relaxation rate below 60 K is found to obey a power lawT n with an exponentn ≈ 3. Such a behavior (previously reported for nuclear spin relaxation) is indicative of the d-wave superconducting pairing. Additional paramagnetic centers characterized by relatively slow spin-lattice relaxation are found in both 123 and 124 systems. A well-pronounced change in theT 1 temperature dependence atTT* ≈ 180–200 K is observed for these slowly relaxing centers as well as for the conventional, fast-relaxing Gd3+ ions, suggesting microscopic phase separation and a change in the relaxation mechanism due to electronic crossover related with the opening of the spin gap. This hypothesis is supported by some “180 K anomalies” previously reported by other authors.  相似文献   

4.
Measurements of electron spin resonance (ESR) of La2/3Ca1/3MnO3 (LCMO) in the ferromagnetic and paramagnetic phases were carried out. Phase transition and temperature dependence of the peak-to-peak ESR linewidth were determined. The transition temperature between ferromagnetic and paramagnetic phases was observed at 265 K. A prominent increase of the peak-to-peak linewidth with decreasing temperature below Tc was observed. Using the dynamic scale theory and block spin transformation in critical phenomenon, the quantitative calculation of peak-to-peak linewidth at near Tc was made, which was in good agreement with the experimental data. It was believed that the long interactions between the ferromagnetic microregions for LCMO played a key role in determining the ESR linewidth.  相似文献   

5.
In order to microscopically investigate the magnetic properties of both paramagnetic and antiferromagnetic phases in Mn3Si (T N?=?23 K), the 55Mn NMR has been carried out at temperatures between 2.2 K and 300 K. The temperature dependences of the spectrum, Knight shift (or resonance frequency shift) and spin-lattice relaxation time T 1 of 55Mn NMR have been measured. In the paramagnetic phase, only one resonance spectrum can be obtained. The observed spectrum is identified to be a signal corresponding to the Mn(II) site. In the antiferromagnetic phase, two different spectra corresponding to the Mn(I) and Mn(II) sites are found at the resonance frequencies of 145 and 6 MHz, respectively, by the zero field NMR at 4.2 K. From these results, the internal magnetic fields on the 55Mn(I) and 55Mn(II) nuclei are found to be 13.6 and 0.6 T, respectively. According to the NMR results, the helical structure in incommensurate Mn spin states is better explained compared with the transverse sinusoidal structure.  相似文献   

6.
The heat capacity of polycrystalline Fe[S2CN(C2H5)2]2Cl has been measured in the temperature range from 0.411 to 19.55 K. The transition between ferromagnetic and paramagnetic states is characterized by a sharp λ-type anomaly centered at the Curie temperature, Tc = 2.412 ± 0.008 K. The enthalpy and the entropy of transition are 40.475 J mol?1 and 11.199 J K?1mol?1 (= 1.347 R), respectively. The transition entropy is only 2.81% smaller than R In 4. This fact ascertains that the spin manifold is really a quartet. The ground spin states of the present compound are characterized by a zero-field splitting of the S = 32 state into two Kramers' doublets. The overlapping non-cooperative Schottky-type anomaly due to the energy separation between the two Kramers' doublets is separated tentatively from the cooperative heat capacity due to the exchange interaction. Based on a careful analysis of the transition entropy it may be concluded that the magnetic structure of the present complex would be a two-dimensional triangular Ising lattice. The exchange and the Curie-Weiss constants are also determined to be 0.155 and 4.19 K, respectively.  相似文献   

7.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

8.
The complex permittivity ?* of ceramics of bismuth-lanthanum manganite Bi0.5La0.5MnO3 has been measured in ranges of temperatures T = 10–200 K and frequencies f = 102–106 Hz. Clearly pronounced regions of the non-Debye dielectric relaxation have been revealed at low temperatures (T < 90 K). To describe them, the possible mechanisms have been proposed and discussed. The temperature dependences of magnetization, the anomalous behavior of which can be associated with the phase transition from the paramagnetic phase into the ferromagnetic phase occurring at T ~ 40–80 K, have been measured in the temperature range T = 10–120 K.  相似文献   

9.
With original modulation technique, the longitudinal electron spin-relaxation timeT 1 has been measured in the La1-xCaxMnO3 manganite (x = 0.1) both in the paramagnetic state and around the temperature (T c) of the ferromagnetic ordering. The data are compared with the evolution of the transverse relaxation time T2 as determined from the electron spin resonance (ESR) linewidth. Well above Tc, theT 1 =T 2 equality was confirmed, whereas a steep slowing down ofT 2 was observed asT c was approached (theT 1/T2 ratio increased by two orders of magnitude). The temperature dependence ofT 1 within the whole temperature range was found to be consistent with that ofT · χ(T), where χ(T) is the electron-spin susceptibility obtained from the ESR absorption area. The interpretation suggests that both the longitudinal and transverse electron-spin relaxation rates are governed by strong exchange interaction between the Mn ions, the ESR linewidth being inhomogeneously broadened in the vicinity of the phase transition.  相似文献   

10.
Stable paramagnetic centers in γ-ray-irradiated L-alanine dosimeters exhibit a maximum in relaxation rate in the vicinity of 190 K. The mechanism of this relaxation rate has been investigated on the first stable alanine radical center, SARI, by employing continuous-wave transfer saturation electron paramagnetic resonance and pulse electron paramagnetic resonance techniques. The detected in-phase and out-of-phase spectra as well as phase memory times,T M, indicate that besides the well-known τp of the CH3 group of SAR1 an additional correlation time, τlElk=2689±50 K and 0 τ10 = 0.15 ± 0.03 ps), is involved in the transverse relaxation process and effects the SAR1 center. For the SAR1 center this mechanism originates from the hindered motion of undamaged CH3 and NH 3 + groups in the lattice. The motion of these groups additionally effects the spectrum of the SAR1 center through averaging out of the anisotropic splitting.  相似文献   

11.
The quadrupole 209Bi spin–spin and spin–lattice relaxation were studied within 4.2–300 K for pure and doped Bi4Ge3O12 single crystals which exhibit, as was previously found, anomalous magnetic properties. The results revealed an unexpectedly strong influence of minor amounts of paramagnetic dopants (0.015–0.5 mol.%) on the relaxation processes. Various mechanisms (quadrupole, crystal electric field, electron spin fluctuations) govern the spin–lattice relaxation time T 1 in pure and doped samples. Unlike T 1, the spin–spin relaxation time T 2 for pure and Nd-doped samples was weakly dependent on temperature within 4.2–300 K. Doping Bi4Ge3O12 with paramagnetic atoms strongly elongated T 2. The elongation, although not so strong, was also observed for pure and doped crystals under the influence of weak (~30 Oe) external magnetic fields. To confirm the conclusion about strong influence of crystal field effects on the temperature dependence of T 1 in the temperature range 4.2–77 K, the magnetization vs. temperature and magnetic field was measured for Nd- and Gd-doped Bi4Ge3O12 crystals using a SQUID magnetometer. The temperature behavior of magnetic susceptibility for the Nd-doped crystal was consistent with the presence of the crystal electric field effects. For the Gd-doped crystal, the Brillouin formula perfectly fitted the curve of magnetization vs. magnetic field, which pointed to the absence of the crystal electric field contribution into the spin–lattice relaxation process in this sample.  相似文献   

12.
Si dangling bond centers in aerosol particles of amorphous hydrogenated silicon formed by thermal decomposition of SiH4 in Ar were studied by pulsed electron paramagnetic resonance. The hole-burning and inversion-recovery experiments demonstrate that large-scale rapid spectral diffusion takes place in the samples with high spin concentration. Correlation times τc of the spectral diffusion and spin-lattice relaxation timesT 1 were obtained in the temperature range between 77 and 290 K. Above 130 K, τc andT 1 are proportional one to the other. The unusual feature of this spectral diffusion is that the shape of the central part of the spectral hole does not change when the delay time increases. The other paramagnetic centers previously investigated showed a remarkable change of the hole shape which was induced by modulation of dipolar interaction due to spin flips. It is suggested that the observed anomaly in the Si dangling bond centers arises due to cooperative spin flips.  相似文献   

13.
14.
The nuclear spin lattice relaxation timeT 1 of the23Na,85Rb,87Rb,133Cs,14N nuclei is measured in NaCN, RbCN and CsCN as a function of temperature below and above the ferroelastic phase transition temperatureT c. BelowT c the behaviour ofT 1 of the alkali nuclei renders possible to determine the flip frequency of the CN molecules and its temperature dependence. AboveT c from the14NT 1 the correlation time τc of the rotational motions of the CN molecules and its temperature dependence is determined. An empirical rule is verified demonstrating that atT c the correlation times take nearly the same values for all cyanides. For the high and low temperature phases one obtains atT c about τc=5·10?13s and τc=5·10?11s, respectively. The results are discussed with respect to the mechanism of the phase transition.  相似文献   

15.
Selective single and double quantum excitation pulsed NMRON has been utilized to obtain rotation patterns, free induction decays, and spin echoes in antiferromagnetic54Mn−MnCl2·4H2O and the quasi-2 dimensional ferromagnet54Mn−Mn(COOCH3)2·4H2O. The pulsed technique is well suited to observing fast spin-lattice relaxation and T1 values down to 100 ms have been measured in these systems. These short times may make magnetic insulators viable hosts for on-line experiments. The dependence on field and temperature of the54Mn spin-lattice relaxation time T1 has been investigated and a T1 minimum at high fields observed in both systems. A spin-spin relaxation time T2≈50 μs is measured in54Mn−MnCl2·4H2O. The observation of NMRON in the paramagnetic phase of MnCl2·4H2O allows the resonant frequencies in the antiferromagnetic and paramagnetic phases to be compared, yielding a value for the zero point spin deviation in the former phase.  相似文献   

16.
本文报道非晶态Fe13Ni67.2P4.5B15.3合金的磁化强度与温度和磁场关系的测量结果。在居里温度附近样品的磁特性符合二级相变规律,得到临界指数β=0.39±0.02,γ=1.56±0.06,δ=5.20±0.1,样品的居里温度Tc=(180.4±0.2)K。在实验误差范围内,临界指数β,γ,δ满足γ=β(δ-1)关系,在168—192K温度范围,实验数据满足二级相变的磁状态方程。当T>270K时,样品顺磁磁化率服从居里-外斯定律,由居里-外斯常数c计算出有效顺磁磁矩Peff=3.19 μB关键词:  相似文献   

17.
A non-uniform magnetic state in the perovskite system LaMn0.6Co0.4O3 has been studied by magnetometric methods. Two ferromagnetic (FM) critical temperatures are observed. The first one at TC1≈217 K is ascribed to the onset of FM state in the Mn4+/Co2+-ordered domains (phase 1), while the disordered regions containing Mn4+, Mn3+, Co3+ and Co2+ valence states (phase 2) remain in the paramagnetic state. Below TC2≈147 K a long-range FM arrangement develops also in certain part of phase 2, but the major part of phase 2 is formed by polydisperse FM clusters. This second transition is accompanied by a huge increase of coercivity and by occurrence of long-time relaxation. Finally, between 40 and 65 K, a frequency-dependent maximum in the imaginary part of the ac susceptibility is observed, which can be ascribed to the relaxation of small clusters behaving superparamagnetically.  相似文献   

18.
Comprehensive measurements of electron spin resonance (ESR) and magnetization of La0.7Ca0.3MnO3 in the ferromagnetic as well as paramagnetic phases were carried out. Quantitative evidences for the inhomogeneous magnetic structure, consisting of ferromagnetic microregions embedded in the antiferromagnetic surrounding near Tc, were found. It is suggested that the microscopic local magnetic structures above and below Tc are qualitatively similar except that the phase below Tc carries long range order between the ferromagnetic microregions whose sizes grow with decreasing temperature.  相似文献   

19.
Using an original modulation technique, the electron spin-lattice relaxation have been investigated in two noncommon metals: YBa2Cu3Ox, high-Tc material doped with 1% Gd, and Rb1C60, linear polymer phase fulleride. In the first case, the Korringa-like temperature dependence of the Gd3+ longitudinal relaxation time T1, is found forx = 6.59 in a wide temperature range 4.2 <T < 200 K, both above and below Tc = 56 K. Atx = 6.95 (Tc = 90 K), the T1 behavior within 50 <T < 200 K is evidently affected by spin gap opening with the gap value of about 240 K. At 200 K, an unexpected acceleration of the relaxation rate takes place, suggesting some change in the relaxation mechanism. The data are discussed in terms of the Barnes-Plefke theory with allowance made for microscopic separation of the normal and superconducting phases. In Rb1C60, the evolution of the ESR line and relaxation rates have been studied accurately in the range of the metal-insulator transition (below 50 K). Interpretation is suggested which takes into account breaking down the relaxation bottleneck due to opening of the energy gap near the Fermi surface. The gap value of about 100 cm?1 is estimated from the analysis of relaxation rates, lineshape and spin susceptibilities.  相似文献   

20.
Two samples of DyAl2 were studied by longitudial μSR in the paramagnetic and ferromagnetic regime. In a region Tc±40 K the samples give different signals although X-ray analysis can not detect any impurity phase in either of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号