首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The variations with temperature of the line-shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in NH4HSeO4 single crystals were investigated, and with these 1H NMR results we were able to distinguish the crystals’ “ammonium” and “hydrogen-bond” protons. The line width of the signal due to the ammonium protons abruptly narrows near the temperature of the superionic phase transition, TSI, which indicates that they play an important role in this phase transition. The 1H T1 for NH4+ and HSeO4 in NH4HSeO4 do not change significantly near the ferroelectric phase transition of TC1 (=250 K) and the incommensurate phase transition of Ti (=261 K), whereas they change near the temperature of the superionic phase transition TSI (=400 K). Our results indicate that the main contribution to the low-temperature phase transition below TSI is that of the molecular motion of ammonium and hydrogen-bond protons, and the main contribution to the conductivity at high temperatures above TSI is the breaking of the O-H?O bonds and the formation of new H- bonds in HSeO4. In addition, we compare these results with those for the NH4HSO4 and (NH4)3H(SO4)2 single crystals, which have similar hydrogen-bonded structure.  相似文献   

2.
We investigated the temperature dependences of the line shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in (NH4)4LiH3(SO4)4 single crystals. On the basis of the data obtained, we were able to distinguish the “ammonium” and “hydrogen-bond” protons in the crystals. For both the ammonium and hydrogen-bond protons in (NH4)4LiH3(SO4)4, the curves of T1 and T2 versus temperature changed significantly near the ferroelastic and superionic phase transitions at TC (=232 K) and TS (=405 K), respectively. In particular, near TS, the 1H signal due to the hydrogen-bond protons abruptly narrowed and the T2 value for these protons abruptly increased, indicating that these protons play an important role in this superionic phase transition. The marked increase in the T2 of the hydrogen-bond protons above TS indicates that the breaking of O-H?O bonds and the formation of new H-bonds with HSO4- contribute significantly to the high-temperature conductivity of (NH4)4LiH3(SO4)4 crystals.  相似文献   

3.
Molecular reorientation and low temperature relaxation effects of NH+ 4 ion and the effect of CH3 substitution (in place of H) are investigated by proton spin lattice relaxation time (T1) measurements at 10 MHz in NH4SnCl3 and N(CH3)4SnCl3 in the temperature range 4.2 K upto the melting points of the compounds (? 440 K). Phase transitions around 360 K in NH4SnCl3 and around 361 and 116K in N(CH3)4SnCl3 have been observed. In NH4SnCl3, the high temperature minimum at 330.5 K is attributed to the translational diffusion of the NH+ 4 ions, while the other T1, minima at 103.5, 60 and 50 K are ascribed to the reorientations of the NH+ 4 ion about the C2 and C3 axes. The low temperature minimum at 13.5 K is attributed to rotational tunnelling of the NH+ 4 ions. In N(CH3)4SnCl3, in addition to the high temperature minima at 212.2 and 182.6 K due to N(CH3)4 tumbling and CH3 reorientation, a temperature independent T1 behaviour between 83 and 31 K is observed, below which T1 decreases and tends to go through a minimum around 5 K. This low temperature minimum is attributed to rotational tunnelling of the CH3 groups. The motional parameters and tunnel frequencies are estimated.  相似文献   

4.
NMR measurements of proton spin-lattice relaxation times T1 and T1? in the layered intercalation compounds TiS2(NH3)1.0 and TaS2(NH3)x (x = 0.8, 0.9, 1.0) are reported as functions of frequency and temperature (100 K – 300 K). These observations probe the spectral density of magnetic fluctuations due to motions of the intercalated molecules at frequencies accessible to the T1 (4–90 MHz) and T1? (1–100 kHz) measurements. Since the average molecular hopping time (τ) can be changed by varying temperature, different regions of the spectral density can be examined. For T > 200 K, both T?11 and T?11? vary logarithmically with frequency, reflecting the two dimensional character of the molecular diffusion. The temperature dependence of T1 suggests that a more accurate picture of the short time dynamics is required. No dependence of relaxation rate on vacancy concentration is found.  相似文献   

5.
姚玉书  陈红  李永津 《物理学报》1984,33(9):1278-1281
在流体静压力到10kbar范围内,采用DTA技术研究了压力对NH4IO3及其固溶体Kx(NH4)1-xIO3的相变温度(Tc)的影响。实验结果表明,虽然固溶体的相变温度Tc随K+组分的增加而减小,但是dTc/dP值却同K+组分无关。这意味着在压力下IO3-离子的伸长对Tc随压力增加起主要作用。 关键词:  相似文献   

6.
The heat capacity of (NH4)2KGaF6 elpasolite is measured in the temperature range from 80 to 350 K. A sequence of three phase transitions at T 1=288.5 K, T 2=250 K, and T 3=244.5 K is revealed, and the thermodynamic characteristics of these transitions are determined. The influence of hydrostatic pressure on the phase transition temperature is investigated. The results obtained are discussed within the model of orientational ordering of NH 4 + and GaF 6 3? ionic groups.  相似文献   

7.
Translational diffusion of NH4+ ions in [(NH4)1?xRbx]3H(SO4)2 has been evaluated quantitatively by means of 1H spin–lattice relaxation times in the rotating frame, T1ρ. In the high-temperature phase (phase I), the mean residence times of NH4+ ions are three or four orders of magnitude larger than those of the acidic protons. In the room-temperature phase (phase II), they are two or three orders of magnitude larger than those of the acidic protons. The transition from phases II to I causes one order of magnitude enhancement in the diffusion of NH4+ ions. The mean residence time of NH4+ ions increases with increase in the Rb content. The similar trend is also observed in phase II.  相似文献   

8.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

9.
The proton second moment (M 2) and spin-lattice relaxation time (T 1) have been measured in (NH4)2ZnBr4 in the range 77–300 K. The room-temperature spectrum shows a structure which disappears around 243 K. The signal is strong and narrow even at 77 K. Proton T 1 shows a maximum at 263 K, caused by spin rotation interaction and decreases with decreasing temperature till 235 K, where it shows a sudden increase. Below 235 K, again it decreases and shows a slope change around 216.5 K (reported Tc ). From 216.5 K, T 1 decreases continuously without exhibiting any minimum down to 77 K. The narrow line at 77 K, and absence of a T 1 minimum down to 77 K indicate the possibility of quantum mechanical tunnelling in this system. Motional parameters such as activation energy and pre-exponential factor have been evaluated for the reorientational motion of the NH+ 4 ion.  相似文献   

10.
Proton spin-lattice relaxation times T1 and T have been measured in NH4IO4 between 150 K and 50 K. The relaxation in the rotating frame was strongly nonexponential between 70 K and 53 K, which supports the tunneling assisted relaxation model of NH+4 in the rotating frame. The tunneling frequency was determined to be Λ0 =1.5 MHz.  相似文献   

11.
The rate coefficient k1 for NH2 + N2H4 was measured to be (5.4 ± 0.4) × 10−14 cm3 molecule−1 s−1 at 296 K. NH2 was generated by pulsed laser photolysis of NH3 at 193 nm, and monitored as a function of time by pulsed laser-induced fluorescence excited at 570.3 nm under pseudo-first order conditions in the presence of excess N2H4 in an Ar bath gas. This reaction was also investigated computationally, with geometries and scaled frequencies obtained with M06-2X/6-311+G(2df,2p) theory, and single-point energies from CCSD(T)-F12b/cc-pVTZ-F12 theory, plus a term to correct approximately for electron correlation through CCSDT(Q). Three connected transition states are involved and rate constants were obtained via Multistructural Improved Canonical Variational Transition State Theory with Small Curvature Tunneling. Combination of experiment and theory leads to a recommended rate coefficient for hydrogen abstraction of k1 = 6.3 × 10−23 T3.44 exp(+289 K/T) cm3 molecule−1 s−1. The minor channel for H + N2H4 forming NH2 + NH3 was characterized computationally as well, to yield 5.0 × 10−19 T2.07 exp(-4032 K/T) cm3 molecule−1 s−1. These results are compared to several discordant prior estimates, and are employed in an overall mechanism to compare with measurements of half-lives of hydrazine in a shock tube.  相似文献   

12.
The parallel magnetic susceptibilities of ferromagnetic K2 Cu F4 and (CH3 NH3)2 Cu Cl4 have been measured near the critical temperature. In both ferromagnets, the thermal dependence cannot be described by the simple power law ?-γ with ? = TTC ? 1 over a large range of temperatures. Due to crossover with dimensionality, the γ value increases from 1 for K2 Cu F4 and 1.23 for (CH3 NH3)2 Cu Cl4 in the immediate vicinity of Tc, to a maximum value of about 2.  相似文献   

13.
The spin-lattice relaxation timesT 1 were measured for protons and deuterons in polycrystalline NH4NO3 and ND4NO3. The investigation was carried out at temperatures between about 80°K and 430°K using the NMR pulse method. From the measured values ofT 1 the activation energies for the reorientation motions of NH 4 + and ND 4 + ions below 200°K were calculated to be 2.07±0.11 kcal/mole and 2.56±0.23 kcal/mole, respectively. The quadrupole coupling constante 2 Qq/h of the deuteron in ND 4 + ion was found to be 194±30 kc/s.  相似文献   

14.
The spin-lattice relaxation times, T1, of protons in o, m, p-phenylene-diamine dihydrochlorides C6H4(NH2)2·2HCl, phenylhydrazinium chloride C6H5NHNH3Cl, hexaethylbenzene C6(CH2CH3)6, tetrabutylammonium bromide [CH3(CH2)3]4NBr, iodide [CH3(CH2)3]4NI, tetraheptylammonium bromide [CH3(CH2)6]4NBr and iodide [CH3(CH2)6]4NI powders have been measured between 400 and 100 K at 60MHz. The experimental results have been explained by considering the reorientational motions of ?NH3+ and ?CH3 groups about C3 axes and their role of behaving as sinks to rapid spin diffusion of the ring protons of the phenylene and the methylene protons. The observed T1, minima in all these substances turn out to be the measures of the ratios between the total number of protons and the number of reorienting ?NH3+ or ?CH3 protons. Therefore it has been concluded that the T1, minima of ?NH3+ and ?CH3 groups, when obtainable can indicate their number present in a solid sample.  相似文献   

15.
Abstract

The temperature dependence of four spectroscopic parameters reveals the existence of an amazing local relaxation in the Cu Cl4 (NH3)2 2- centre placed in the NH4 Cl lattice below TC = 242.5 K. Although the lattice parameter a decreases it is shown here that the Cu2+ - Cl? distance experiences however a significant increase.  相似文献   

16.
The heat capacity of the layer compound, tetrachlorobis (methylammonium) manganese II, (CH3NH3)2MnCl4, has been measured over the range 10K <T<300K. In this region, two structural phase transitions have been observed previously by other techniques: one transition is from a monoclinic low temperature (MLT) phase to a tetragonal low temperature (TLT) phase, and the other is from TLT to an orthorhombic room temperature (ORT) phase. The present experiments have shown that the lower transition (MLT→TLT) occurs at T = 94.37±0.05K with ΔHt = 727±5 J mol?1 and ΔSt = 7.76±0.05 J K?1 mol?1, and the upper transition (TLT→ORT) takes place at T = 257.02±0.07K with ΔHt = 116±1J mol?1 and ΔSt = 0.451±0.004 J K?1mol?1. These results are discussed in the light of recent measurements on (CH3NH3)2CdCl4, and also with regard to a recent theoretical model of the structural phase transitions in compounds of this type.In addition to the structural phase transitions, (CH3NH3)2MnCl4 also undergoes magnetic ordering at T < 150K. The magnetic component to the heat capacity, as deduced from a corresponding states comparison of the heat capacity of the present compound with that of the Cd compound, is shown to be consistent with the behaviour expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

17.
The crystal structure of [C(NH2)3]2HgBr4 has been determined at room temperature: monoclinic, space group C2/c, with a = 10.035(2), b = 11.164(2), c = 13.358(3) Å, β = 111.67(3)°, and Z = 4. The crystal consists of planar [C(NH2)3]+ and distorted tetrahedral [HgBr4]2? ions. The Hg atom is located on a two-fold axis such that two sets of inequivalent Br atoms exist in an [HgBr4]2? ion. In accordance with the crystal structure, two 81Br NQR lines widely separated in frequency were observed between 77 and ca. 380 K. [C(NH2)3]2HgI4 yielded four 127I NQR lines ascribable to m = ±1/2 ? ±3/2 transitions, indicating that its crystal structure is different from the bromide complex. The 1H NMR T 1 measurements showed a single minimum for the bromide but two minima for the iodide. The analyses based on the C3 reorientations of the planar [C(NH2)3]+ ions gave the activation energies of 29.8 kJ mol?1 for the bromide, and 30.2 and 40.0 kJ mol?1 for the iodide.  相似文献   

18.
The heat capacity of [(C2H5)2NH2]2CuCl4 crystals, both nonirradiated and γ-irradiated to a dose of 107R, was studied in the temperature interval 90–330 K by adiabatic calorimetry. The temperature dependence of Cp(T) was found to have a peak-shaped anomaly in the region of the thermochromic phase transition (PT) at T = 322.7 K. Smoothened experimental heat capacity data were used to calculate the changes in the thermodynamic functions. The changes in the entropy and enthalpy of the thermochromic PT were determined to be ΔS = 42 J K?1 mol?1 and ΔH = 13653 J mol?1 for the nonirradiated crystals and ΔS = 39 J K?1 mol?1 and ΔH = 12120 J mol?1 for the irradiated crystals, respectively. Irradiation of a [(C2H5)2NH2]2CuCl4 crystal by γ rays to a dose of 107 R was shown to shift the PT point toward lower temperatures by ΔT ≈ 1.7 K.  相似文献   

19.
The complex dielectric constant of (NH4)2BeF4 single crystals was measured in the frequency range from 0.6 to 300 MHz in the vicinity of the transition temperature Tc. It was found that, the relaxation frequency is about 1 × 108Hz atTc. Dielectric relaxation can be described by a polydispersive process.  相似文献   

20.
Polycrystalline samples of the solid solution [(NH4)xK1?x]2SnCl6(0?x? 1) have been investigated by DSC, X-ray diffraction and Raman scattering experiments. Substitution of K+ by NH+4 depresses the phase transition temperature T1. For 0? x ?0.05 a linear temperature coefficient dT1dx=?5.16 K/mol % is obtained. The cubic lattice constant roughly obeys Vegard's law, whereas the linewidth of the SnCl62?F2g internal vibration displays a nonlinear dependence on composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号