首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cationic Re(V) oxo compounds of the type [ReO(OSiMe3)(eta 2-B(pz)4)(L)2]X [X = Cl, L = 4-(NMe2)C5H4N (1), 1-Meimz (1-methylimidazole; 2), 1/2 dmpe (1,2-bis(dimethylphosphino)ethane; 3), py (4a); X = I, L = py (4b)] can be prepared by reacting trans-[ReO2(eta 2-B(pz)4)(L)2] with XSiMe3. In solution, cations 1-4 are reactive species, and those with unidentate nitrogen donor ligands (1, 2, and 4) rearrange into the neutral derivatives [ReO(Cl)(OSiMe3)(eta 2-B(pz)4)(L)] [L = py (5), 4-(NMe2)C5H4N (6), 1-Meimz (7)], which are also reported herein. Compounds 1-3 and 5-7 have been fully characterized by the usual spectroscopic techniques, which in some cases includes X-ray crystallographic analysis (3, 6, and 7). Compound 3 crystallizes from CH2Cl2/n-hexane as yellow crystals with one molecule of CH2Cl2 solvent, and compounds 6 and 7 crystallize from THF/n-hexane as violet and red crystals, respectively, with one molecule of THF solvent in the case of 6. Crystallographic data: 3, orthorhombic space group Pn2(1)a, a = 11.311(2) A, b = 19.135(2) A, c = 15.443(2) A, V = 3342.4(8) A3, Z = 4; 6, triclinic space group P1, a = 8.7179(11) A, b = 12.5724(8) A, c = 17.750(2) A, alpha = 70.454(7) degrees, beta = 77.935(9) degrees, gamma = 77.129(8) degrees, V = 1768.1(3) A3, Z = 2; 7, monoclinic space group P2(1)/c, a = 16.356(2) A, b = 20.384(3) A, c = 17.360(3) A, beta = 106.971(12) degrees, V = 5535.8(14) A3, Z = 8.  相似文献   

2.
The 3,5-di-tert-butylpyrazolato (3,5-tBu(2)pz) derivatives of aluminum [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(1)R(2)](2) (R(1) = R(2) = Me 1; R(1) = R(2) = Et, 2; R(1) = R(2) = Cl, 3; R(1) = R(2) = I, 4; [(eta(2)-3,5-tBu(2)pz)(3)Al], 5; [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)(C triple bond CPh)(2)] (E = S (6), Se (7), Te (8)) have been prepared in good yield. Compounds 1 and 2 were obtained by the reactions of H[3,5-tBu(2)pz] with Me(3)Al and Et(3)Al, respectively. Reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)H(2)](2) with the pyrazole H[3,5-tBu(2)pz] gave [(eta(2)-3,5-tBu(2)pz)(3)Al] (5). The reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(2)](2) (R = H, Me) and I(2) yielded 4, while the reaction of 1 equiv of K[3,5-tBu(2)pz] and AlCl(3) afforded 3. In addition, the reaction of [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)H(2)] and HC triple bond CPh gave 6, 7, and 8. All compounds have been characterized by elemental analysis, NMR, and mass spectroscopy. The molecular structure analyses of compounds 1, 3, 6, and 7 by X-ray crystallography showed that complexes 1 and 3 are dimeric with two eta(1),eta(1)-pyrazolato groups in twisted conformation while 6 and 7 with two eta(1),eta(1)-pyrazolato groups display a boat conformation.  相似文献   

3.
Treatment of the metallo ligands [ML(pz)(2)(Hpz)] (pz = pyrazolate; L = C(5)Me(5), M = Ir (1); L = mesitylene, M = Ru (3)) with [M'Cl{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (4), Ni (5)) yields heterodinuclear complexes of formula [LM(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (L = C(5)Me(5); M = Ir; M' = Co (6), Ni (7). L = mesitylene; M = Ru; M' = Co (8)). The related complex [Ru(eta(6)-p-cymene)(pz)(2)(Hpz)] (2) reacts with equimolar amounts of 4 or 5 to give mixtures of the corresponding bis(&mgr;-pyrazolato) &mgr;-chloro complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (9), Ni (10)) and the triply pyrazolato-bridged complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(3)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (11), Ni (12)). Complex 1 reacts with 5 in the presence of KOH to give the IrNi complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(3)Ni{HB(3-i-Pr-4-Br-pz)(3)}] (13) whereas its reaction with 4 and KOH rendered the bis(&mgr;-pyrazolato) &mgr;-hydroxo complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(2)(&mgr;-OH)Co{HB(3-i-Pr-4-Br-pz)(3)}] (14). The molecular structure of the heterobridged IrCo complex (6) and those of the homobridged RuNi (12) and IrNi (13) complexes have been determined by X-ray analyses. Compound 6 crystallizes in the monoclinic space group P2(1)/n, with a = 10.146(5) ?, b = 18.435(4) ?, c = 22.187(13) ?, beta = 97.28(4) degrees, and Z = 4. Complex 12 is monoclinic, space group P2(1), with a = 10.1169(7) ?, b = 21.692(2) ?, c = 11.419(1) ?, beta = 112.179(7) degrees, and Z = 2. Compound 13 crystallizes in the monoclinic space group Cc, with a = 13.695(2) ?, b = 27.929(6) ?, c = 13.329(2) ?, beta = 94.11(4) degrees, and Z = 4. All the neutral complexes 6, 12, and 13 consist of linear M.M'.B backbones with two (6) or three (12, 13) pyrazolate ligands bridging the dimetallic M.M' units and three substituted 3-i-Pr-4-Br-pz groups joining M' to the boron atoms. The presence in the proximity of the first-row metal M' of the three space-demanding isopropyl substituents of the pyrazolate groups induces a significant trigonal distortion of the octahedral symmetry, yielding clearly different M'-N bond distances on both sides of the ideal octahedral coordination sphere of these metals.  相似文献   

4.
Treatment of H[3,5-Ph2dp] (Hdp = 1H-1,2,4-diazaphosphole) with nBuLi or KH, or the reaction of K[3,5-tBu2dp] with an excess amount of O2, afforded the dimeric species [(eta2,eta1-3,5-Ph2dp)Li(THF)2]2 and the polymeric complexes [(eta2:eta4-3,5-Ph2dp)K(Et2O2]n, and [[(eta2:eta5-3,5-tBu2dp)K(THF)][eta2(N,N)-eta3(O,P,O)-3,5-tBu2dp-(O,O)O2K]]n, respectively.  相似文献   

5.
The trioxo [ReO(3){SO(3)C(pz)(3)}] (1) (pz = pyrazolyl) and oxo [ReOCl{SO(3)C(pz)(3)}(PPh(3))]Cl (2) compounds with tris(pyrazolyl)methanesulfonate were obtained by treatment of Re(2)O(7) or [ReOCl(3)(PPh(3))(2)], respectively, with Li[SO(3)C(pz)(3)], whereas [ReCl(3){HC(pz)(3)}] (3), [ReCl(3){HC(3,5-Me(2)pz)(3)}] (4) and [ReCl(4){eta(2)-HC(pz)(3)}] (5) were prepared by reaction of [ReOCl(3)(PPh(3))(2)] (3,4) or [ReCl(4)(NCMe)(2)] (5) with hydrotris(pyrazolyl)methane HC(pz)(3) (3,5) or hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me(2)pz)(3) (4). [ReO{SO(3)C(pz)(3)}{OC(CH(3))(2)pz}][ReO(4)] 6, with a chelated pyrazolyl-alkoxide, was derived from an unprecedented ketone-pyrazolyl coupling on reaction of crude 1 with acetone. The compounds have been characterized by elemental analyses, IR and NMR spectroscopies, FAB-MS spectrometry and cyclic voltammetry and, in the case of 5 and 6, also by single-crystal X-ray diffraction. The electrochemical E(L) Lever parameter has been estimated, for the first time, for the SO(3)C(pz)(3)(-) and oxo ligands allowing the measurement of their electron-donor character and comparison with other ligands. Compounds 1, 2 and 6 appear to be the first tris(pyrazolyl)methanesulfonate complexes of rhenium to be reported.  相似文献   

6.
The reaction of rhenium (VII) trioxo complexes containing the ligand sets scorpionate, [HB(pz)3]ReO3 (6), [Ph-B(pz)3]ReO3 (7), and [[HC(pz)3]ReO3][ReO4] (8) and pyridine/pyridine-type ligands [(4,7-diphenyl-1,10-phen)(Br)ReO3] (12), [(4,4'-di-tert-butyl-2,2'-dipyridyl)(Cl)ReO3] (13), and [(py)2Re(Cl)O3] (4), with diphenyl ketene, has led to the isolation of six novel [3 + 2] cycloaddition products. These air-stable solids 9-11 and 15-17 are the result of [3 + 2] addition of the O=Re=O motif across the ketene C=C double bond. Five of the six [3 + 2] cycloaddition products have been structurally characterized by single-crystal X-ray diffraction and in all cases by 13C NMR and IR spectroscopies.  相似文献   

7.
The novel pyrazolyl-based ligands 3,5-Me2pz(CH2)2NH(CH2)2NH(CH2)2NH2 and pz*(CH2)2NH-Gly-CH2STrit (pz*=pz, 3,5-Me2pz, 4-(EtOOC)CH(2)-3,5-Me2pz) were synthesized, and their suitability to stabilize Re(V) oxocomplexes was evaluated using different starting materials, namely (NBu4)[ReOCl4], [ReOCl3(PPh3)2] and trans-[ReO2(py)4]Cl. Compound reacts with trans-[ReO2(py)4]Cl yielding the cationic compound [ReO(OMe){3,5-Me2pz(CH2)2N(CH2)2NH(CH2)2NH2}](BPh4) in a low isolated yield. In contrast, the neutral complexes [ReO{pz*(CH2)2NH-Gly-CH2S}] (pz*=pz, 3,5-Me2pz, 4-(EtOOCCH2)-3,5-Me2pz) were synthesized almost quantitatively by reacting [ReOCl3(PPh3)2] or (NBu4)[ReOCl4] with the trityl-protected chelators. The X-ray diffraction analysis of and confirmed the tetradentate coordination mode of the respective ancillary ligands. In the monoanionic chelator coordinates to the metal through four nitrogen atoms, while in the chelator is trianionic, coordinating to the metal through three nitrogens and one sulfur atom. Solution NMR studies of , including two-dimensional NMR techniques (1H COSY and 1H/13C HSQC), confirmed that the N3S coordination mode of the chelators is retained in solution. Unlike , complexes may be considered relevant in the development of radiopharmaceuticals, as further corroborated by the synthesis of the congener [99mTcO{pz(CH2)2-NH-Gly-CH2S}]. This radioactive compound was obtained from 99mTcO4- in aqueous medium, in almost quantitative yield and with high specific activity and radiochemical purity.  相似文献   

8.
Two series of heavy alkaline earth metal pyrazolates, [M(Ph(2)pz)(2)(thf)(4)] 1 a-c (Ph(2)pz=3,5-diphenylpyrazolate, M=Ca, Sr, Ba; THF=tetrahydrofuran) and [M(Ph(2)pz)(2)(dme)(n)] (M=Ca, 2 a, Sr, 2 b, n=2; M=Ba, 2 c, n=3; DME=1,2-dimethoxyethane) have been prepared by redox transmetallation/ligand exchange utilizing Hg(C(6)F(5))(2). Compounds 1 a and 2 b were also obtained by redox transmetallation with Tl(Ph(2)pz). Alternatively, direct reaction of the alkaline earth metals with 3,5-diphenylpyrazole at elevated temperatures under solventless conditions yielded compounds 1 a-c and 2 a-c upon extraction with THF or DME. By contrast, [M(Me(2)pz)(2)(Me(2)pzH)(4)] 3 a-c (M=Ca, Sr, Ba; Me(2)pzH=3,5-dimethylpyrazole) were prepared by protolysis of [M[N(SiMe(3))(2)](2)(thf)(2)] (M=Ca, Sr, Ba) with Me(2)pzH in THF and by direct metallation with Me(2)pzH in liquid NH(3)/THF. Compounds 1 a-c and 2 a-c display eta(2)-bonded pyrazolate ligands, while 3 a,b exhibit eta(1)-coordination. Complexes 1 a-c have transoid Ph(2)pz ligands and an overall coordination number of eight with a switch from mutually coplanar Ph(2)pz ligands in 1 a,b to perpendicular in 1 c. In eight coordinate 2 a,b the pyrazolate ligands are cisoid, whilst 2 c has an additional DME ligand and a metal coordination number of ten. By contrast, 3 a,b have octahedral geometry with four eta(1)-Me(2)pzH donors, which are hydrogen-bonded to the uncoordinated nitrogen atoms of the two trans Me(2)pz ligands. The application of synthetic routes initially developed for the preparation of lanthanoid pyrazolates provides detailed insight into the similarities and differences between the two groups of metals and structures of their complexes.  相似文献   

9.
The reaction between (1-acetyl)pyrene and dimethylformamide dimethylacetal followed by condensation of the resulting product mixture with hydrazine affords 3(5)-(1-pyrenyl)pyrazole (2) in good yield. The easily separable bis[(1-pyrenyl)pyrazole]methane derivatives CH(2)(3-pz(pyrene))(2) (3a, pz = pyrazolyl ring) and CH(2)(3-pz(pyrene))(5-pz(pyrene)) (3b) were prepared by metathetical reactions between pyrazole and CH(2)Cl(2), while CH((n)()Pr)(pz(pyrene))(2) (4) was prepared by transamination of 2 with butyraldehyde diethylacetal. Compounds 2-4 are luminescent under irradiation with UV light and have pyrenyl monomer-based emissions centered near 400 nm. Compounds 3a and 4 each react with Re(CO)(5)Br in a 1:1 molar ratio to form highly insoluble complexes Re(CO)(3)Br[(pz(pyrene))(2)CH(2)] (5) and Re(CO)(3)Br[(pz(pyrene))(2)CH((n)()Pr)] (6). Complex Re(CO)(3)Br[(pz)(2)CMe(2)] (7) was also prepared. X-ray structural studies of 6 show extensive pi-stacking of pyrenyl groups to form two-dimensional sheets. Pulsed field gradient spin-echo NMR (PGSE-NMR) experiments show that the complexes are monomeric in tetrachloroethane. Variable-temperature, difference NOE and 2-D NMR experiments demonstrate that isomers are present in solution that differ by restricted rotation about the pyrazolyl-pyrenyl bond. The pyrenyl-based emissions centered near 400 nm are quenched by complexation to the Re(CO)(3)Br moiety in 5 and 6.  相似文献   

10.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

11.
Molybdenum dioxo compounds [MoO2Cl(eta 2-pz)] and [MoO2(eta 2-pz)2] with pz = eta (2)-3,5-di-tert-butylpyrazolate have been synthesized; crystallographic data, catalytic activity, and oxo transfer properties are described.  相似文献   

12.
Sodium and potassium tetrakis(3,5-di-tert-butylpyrazolato)lanthanoidate(III) complexes [M[Ln(tBu(2)pz)(4)]] have been prepared by reaction of anhydrous lanthanoid trihalides with alkali metal 3,5-di-tert-butylpyrazolates at 200-300 degrees C, and a 1,2,4,5-tetramethylbenzene flux for M=K. On extraction with toluene (or occasionally directly from the reaction tube) the following complexes were isolated: [Na(PhMe)[Ln(tBu(2)pz)(4)]] (1 Ln; 1 Ln=1 Tb, 1 Ho, 1 Er, 1 Yb), [K(PhMe)[Ln(tBu(2)pz)(4)]].2 PhMe (2 Ln; 2 Ln=2 La, 2 Sm, 2 Tb, 2 Ho, 2 Yb, 2 Lu), [Na[Ln(tBu(2)pz)(4)]](n) (3 Ln; 3 Ln=3 La, 3 Tb, 3 Ho, 3 Er, 3 Yb), [K[Ln(tBu(2)pz)(4)]](n) (4 Ln; 4 Ln=4 La, 4 Nd, 4 Sm, 4 Tb, 4 Ho, 4 Er, 4 Yb, 4 Lu), with the last two classes generally being obtained by loss of toluene from 1 Ln or 2 Ln, and [Na(tBu(2)pzH)[Ln(tBu(2)pz)(4)]].PhMe (5 Ln; 5 Ln=5 Nd, 5 Er, 5 Yb). Extraction with 1,2-dimethoxyethane (DME) after isolation of 2 Ho yielded [K(dme)[Ho(tBu(2)pz)(4)]] (6 Ho). X-ray crystal structures of 1 Ln (=1 Tb, 1 Ho; P2(1)/c), 2 Ln (=2 La, 2 Sm, 2 Tb, 2 Yb, 2 Lu; Pnma), 3,4 Ln (=3 La, 3 Er, 4 Sm; P2(1)/m), and 5 Ln (=5 Nd, 5 Er, and 5 Yb; P1) show each group to be isomorphous regardless of the size of the Ln(3+) ion. All complexes contain eight-coordinate [Ln(eta(2)-tBu(2)pz)(4)] units. These are further linked to the alkali metal by bridging through two (1,2,5 Ln) or three (3,4 Ln) tBu(2)pz groups which show striking coordination versatility. Sodium is coordinated by an eta(4)-PhMe, a micro-eta(2):eta(2)-tBu(2)pz, and a micro-eta(4)(Na):eta(2)(Ln)-tBu(2)pz ligand in 1 Ln, and by one eta(1)-tBu(2)pzH and two micro-eta(3)(Na):eta(2)(Ln) ligands in 5 Ln. By contrast, potassium has one eta(6)-PhMe and two micro-eta(5)(K):eta(2)(Ln) ligands in 2 Ln. Classes 3,4 Ln form polymeric chains with the alkali metal bonded by two micro-eta(3)(NNC-M):eta(2)(Ln)-tBu(2)pz ligands within [MLn(tBu(2)pz)(4)] units which are joined together by eta(1)(C)-tBu(2)pz-Na, K linkages.  相似文献   

13.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

14.
The complexes [Fe[HC(3,5-Me2pz)3]2](BF4)2 (1), [Fe[HC(pz)3]2](BF4)2 (2), and [Fe[PhC(pz)2(py)]2](BF4)2 (3) (pz = 1-pyrazolyl ring, py = pyridyl ring) have been synthesized by the reaction of the appropriate ligand with Fe(BF4)2.6H2O. Complex 1 is high-spin in the solid state and in solution at 298 K. In the solid phase, it undergoes a decrease in magnetic moment at lower temperatures, changing at ca. 206 K to a mixture of high-spin and low-spin forms, a spin-state mixture that does not change upon subsequent cooling to 5 K. Crystallographically, there is only one iron(II) site in the ambient-temperature solid-state structure, a structure that clearly shows the complex is high-spin. M?ssbauer spectral studies show conclusively that the magnetic moment change observed at lower temperatures arises from the complex changing from a high-spin state at higher temperatures to a 50:50 mixture of high-spin and low-spin states at lower temperatures. Complexes 2 and 3 are low-spin in the solid phase at room temperature. Complex 2 in the solid phase gradually changes over to the high-spin state upon heating above 295 K and is completely high-spin at ca. 470 K. In solution, variable-temperature 1H NMR spectra of 2 show both high-spin and low-spin forms are present, with the percentage of the paramagnetic form increasing as the temperature increases. Complex 3 is low-spin at all temperatures studied in both the solid phase and solution. An X-ray absorption spectral study has been undertaken to investigate the electronic spin states of [Fe[HC(3,5-Me2pz)3]2](BF4)2 and [Fe[HC(pz)3]2](BF4)2. Crystallographic information: 2 is monoclinic, P2(1)/n, a = 10.1891(2) A, b = 7.6223(2) A, c = 17.2411(4) A, beta = 100.7733(12) degrees, Z = 2; 3 is triclinic, P1, a = 12.4769(2) A, b = 12.7449(2) A, c = 13.0215(2) A, alpha = 83.0105(8) degrees, beta = 84.5554(7) degrees, gamma = 62.5797(2) degrees, Z = 2.  相似文献   

15.
Arene ruthenium(II) complexes containing bis(pyrazolyl)methane ligands have been prepared by reacting the ligands L' (L' in general; specifically L(1) = H(2)C(pz)(2), L(2) = H(2)C(pz(Me2))(2), L(3) = H(2)C(pz(4Me))(2), L(4) = Me(2)C(pz)(2) and L(5) = Et(2)C(pz)(2) where pz = pyrazole) with [(arene)RuCl(mu-Cl)](2) dimers (arene = p-cymene or benzene). When the reaction was carried out in methanol solution, complexes of the type [(arene)Ru(L')Cl]Cl were obtained. When L(1), L(2), L(3), and L(5) ligands reacted with excess [(arene)RuCl(mu-Cl)](2), [(arene)Ru(L')Cl][(arene)RuCl(3)] species have been obtained, whereas by using the L(4) ligand under the same reaction conditions the unexpected [(p-cymene)Ru(pzH)(2)Cl]Cl complex was recovered. The reaction of 1 equiv of [(p-cymene)Ru(L')Cl]Cl and of [(p-cymene)Ru(pzH)(2)Cl]Cl with 1 equiv of AgX (X = O(3)SCF(3) or BF(4)) in methanol afforded the complexes [(p-cymene)Ru(L')Cl](O(3)SCF(3)) (L' = L(1) or L(2)) and [(p-cymene)Ru(pzH)(2)Cl]BF(4), respectively. [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) formed when [(p-cymene)Ru(L(1))Cl]Cl reacts with an excess of AgPF(6). The solid-state structures of the three complexes, [(p-cymene)Ru{H(2)C(pz)(2)}Cl]Cl, [(p-cymene)Ru{H(2)Cpz(4Me))(2)}Cl]Cl, and [(p-cymene)Ru{H(2)C(pz)(2)}Cl](O(3)SCF(3)), were determined by X-ray crystallographic studies. The interionic structure of [(p-cymene)Ru(L(1))Cl](O(3)SCF(3)) and [(p-cymene)Ru(L')Cl][(p-cymene)RuCl(3)] (L' = L(1) or L(2)) was investigated through an integrated experimental approach based on NOE and pulsed field gradient spin-echo (PGSE) NMR experiments in CD(2)Cl(2) as a function of the concentration. PGSE NMR measurements indicate the predominance of ion pairs in solution. NOE measurements suggest that (O(3)SCF(3))(-) approaches the cation orienting itself toward the CH(2) moiety of the L(1) (H(2)C(pz)(2)) ligand as found in the solid state. Selected Ru species have been preliminarily investigated as catalysts toward styrene oxidation by dihydrogen peroxide, [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) being the most active species.  相似文献   

16.
The pyrazolato complexes [(Me(2)pz)(THF)Li] (1), [((t)Bu(2)pz)Li](4) (2), [((t)Bu(2)pzH)((t)()Bu(2)pz)Li](2) (2a), [(Me(2)pz)Na] (3), [((t)Bu(2)pz)Na](4), [((t)Bu(2)pz)(6)(OH)Na(7)] (4a), [((t)Bu(2)pz)(18-crown-6)Na] (4b), and [((t)Bu(2)pz)K] (5) were synthesized by metalation reactions between R(2)pzH (R = Me, (t)()Bu) and alkyllithium, elemental sodium, or potassium. All the complexes were characterized by spectroscopic methods and microanalysis, and in addition, the crystal structures of 2, 2a, 3, 4a, 4b, and 5 were obtained by single-crystal X-ray diffraction. They show monomeric, dimeric, cluster, and 1D chain structures in the solid state. Ab initio calculations on the structure and stabilities of the monomeric pzM complexes were performed at the MP2 level of theory showing good agreement with the coordination preferences of the pyrazolato ligand to a particular alkali ion.  相似文献   

17.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

18.
Treatment of anhydrous chromium(III) chloride with 2 or 3 equivalents of 1,3-di-tert-butylacetamidinatolithium or 1,3-diisopropylacetamidinatolithium in tetrahydrofuran at ambient temperature afforded Cr(tBuNC(CH3)NtBu)2(Cl)(THF) and Cr(iPrNC(CH3)NiPr)3 in 78% and 65% yields, respectively. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with the potassium salts derived from pyrazoles and 1,2,4-triazoles afforded Cr(tBuNC(CH3)NtBu)2(X), where X=3,5-disubstituted pyrazolato or 3,5-disubstituted 1,2,4-triazolato ligands, in 65-70% yields. X-Ray crystal structure analyses of Cr(tBuNC(CH3)NtBu)2(Me2pz) (Me2pz=3,5-dimethylpyrazolato) and Cr(tBuNC(CH3)NtBu)2(Me2trz) (Me2trz=3,5-dimethyl-1,2,4-triazolato) revealed eta2-coordination of the Me2pz and Me2trz ligands. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with trifluoromethyltetrazolatosodium (NaCF3tetz) in the presence of 4-tert-butylpyridine afforded Cr(tBuNC(CH3)NtBu)2(CF3tetz)(4-tBupy) in 30% yield. An X-ray crystal structure determination showed eta1-coordination of the tetrazolato ligand through the 2-nitrogen atom. The complexes Cr(iPrNC(CH3)NiPr)3 and Cr(tBuNC(CH3)NtBu)2(X) are volatile and sublime with <1% residue between 120 and 165 degrees C at 0.05 Torr. In addition, these complexes are thermally stable at >300 degrees C under an inert atmosphere such as nitrogen or argon. Due to the good volatility and high thermal stability, these new compounds are promising precursors for the growth of chromium-containing thin films using atomic layer deposition.  相似文献   

19.
The ion-contact complexes [{(eta(5)-Cp)(2)Mn(eta(2):eta(5)-Cp)K}(3)]x0.5 THF (1x0.5 THF) and [{(eta(2)-Cp)(2)(eta(2);eta(5)-MeCp)MnK(thf)}]x2 THF (2x2 THF) and ion-separated complexes [Mg(thf)(6)][(eta(2)-Cp)(3)Mn](2) (3), [Mg(thf)(6)][(eta(2)-Cp)(eta(2)-MeCp)(2)Mn)](2)x0.5 THF (4x0.5 THF), [Mg(thf)(6)][(eta(2)-MeCp)(3)Mn)](2)x0.5 THF (5x0.5 THF) and [Li([12]crown-4)](5)[(eta-Cp)(3)Mn](5) (6) (Cp=C(5)H(5), CpMe=C(5)H(4)CH(3)), have been prepared and structurally characterised. The effects of varying the Cp and CpMe ligands in complexes 1-5 have been probed by variable-temperature magnetic susceptibility measurements and EPR spectroscopic studies.  相似文献   

20.
The reaction of 1,1-diphenylhydrazine with Ti(NMe2)2Cl2 produced the monomeric terminal titanium hydrazido(2-) species Ti(NNPh2)Cl2(HNMe2)2 (1) in near-quantitative yield. The reaction of Ti(NMe2)2Cl2 with the less sterically demanding ligand precursors 1,1-dimethylhydrazine or N-aminopiperidine gave the dimeric mu-eta2,eta1-bridged compounds Ti2(mu-eta2,eta1-NNMe2)2Cl4(HNMe2)2 (2) and Ti2[mu-eta2,eta1-NN(CH2)5]2Cl4(HNMe2)3 (3). The X-ray structures of 2 and 3 showed the formation of N-H...Cl hydrogen bonded dimers or chains, respectively. The reaction of 1 with an excess of pyridine formed [Ti(NNPh2)Cl2(py)2]n (4, n = 1 or 2). The reaction of the tert-butyl imido complex Ti(N(t)Bu)Cl2(py)3 with either 1,1-dimethylhydrazine or N-aminopiperidine again resulted in the formation of hydrazido-bridged dimeric complexes, namely Ti2(mu-eta2,eta1-NNMe2)2Cl4(py)2 (5, structurally characterized) and Ti2[mu-eta2,eta1-NN(CH2)5]2Cl4(py)2 (6). Compounds 1 and 4 are potential new entry points into terminal hydrazido(2-) chemistry of titanium. Compound 1 reacted with neutral fac-N3 donor ligands to form Ti(NNPh2)Cl2(Me3[9]aneN3) (7), Ti(NNPh2)Cl2(Me3[6]aneN3) (8), Ti(NNPh2)Cl2[HC(Me2pz)3] (9, structurally characterized), and Ti(NNPh2)Cl2[HC(n)Bupz)3] (10) in good yields (Me3[9]aneN3 = trimethyl-1,4,7-triazacyclononane, Me3[6]aneN3 = trimethyl-1,3,5-triazacyclohexane, HC(Me2pz)3 = tris(3,5-dimethylpyrazolyl)methane, and HC((n)Bupz)3 = tris(4-(n)butylpyrazolyl)methane). DFT calculations were performed on both the model terminal hydrazido compound Ti(NNPh2)Cl2[HC(pz)3] (I) and the corresponding imido compounds Ti(NMe)Cl2[HC(pz)3] (II) and Ti(NPh)Cl2[HC(pz)3] (III). The NNPh2 ligand binds to the metal center in an analogous manner to that of terminal imido ligands (metalligand triple bond), but with one of the Ti=N(alpha) pi components significantly destabilized by a pi interaction with the lone pair of the N(beta) atom. The NR ligand sigma donor ability was found to be NMe > NPh > NNPh2, whereas the overall (sigma + pi) donor ability is NMe > NNPh2 > NPh, as judged by fragment orbital populations, Ti-N atom-atom overlap populations, and fragment-charge analysis. DFT calculations on the hydrazido ligand in a mu-eta2,eta1-bridging mode showed involvement of the N=N pi electrons in donation to one of the Ti centers. This TiN2 interaction is best represented as a metallocycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号