首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu C  Peng B  Li S  Park CM  Whorton AR  Xian M 《Organic letters》2012,14(8):2184-2187
A reaction based fluorescence turn-on strategy for hydrogen sulfide (H(2)S) was developed. This strategy was based on a H(2)S-specific Michael addition-cyclization sequence. Other biological thiols such as cysteine and glutathione did not pursue the reaction and therefore did not turn on the fluorescence/consume the substrates. The probes showed good selectivity and sensitivity for hydrogen sulfide.  相似文献   

2.
The rapid parallel synthesis and characterization of diverse chirally defined 1,3-oxazolidines is reported. Three diversity elements were incorporated in a 6 x 4 x 4 block approach to generate a 96-member 1,3-oxazolidine library. The synthetic route involved initial attachment of six nonracemic phenylglycidols, (2S,3S)1A-C and (2R,3R)-2A-C, to 2% cross-linked polystyrene resin via a chlorodiethylsilane linker (PS-DES), followed by regio- and stereoselective oxirane ring opening with four primary amines (3a-d). The key condensation reaction between the resulting polymer-bound beta-amino alcohols and four aldehydes (4a-d) was found to occur optimally in warm benzene (60 degrees C) in the presence of anhydrous magnesium sulfate. Cleavage of the oxazolidines from the resin support was achieved with TBAF to give the individual members (2R,4R,5R)-5Aaa-Cdd and (2S,4S,5S)-6Aaa-Cdd in good to excellent yields (51-99%) based on mass recovery. Purities of all these crude products was generally >85% (as measured by LCMS). 1H, 13C NMR, and 1D difference nOe of the library members confirmed the structural and stereochemical integrity of the substituents around the 1,3-oxazolidine core. The asymmetric induction at C-2 (cis or trans to the C-4 substituent) ratio ranged from 4 to I to 49 to 1 across the library. This report highlights the versatility of the 1,3-oxazolidine heterocycle as a scaffold for concise parallel library construction and opens the way for high-throughput screening of such compounds in the biological sphere.  相似文献   

3.
4.
The non-heme iron enzyme cysteine dioxygenase (CDO) catalyzes the S-oxygenation of cysteine by O(2) to give cysteine sulfinic acid. The synthesis of a new structural and functional model of the cysteine-bound CDO active site, [Fe(II)(N3PyS)(CH(3)CN)]BF(4) (1) is reported. This complex was prepared with a new facially chelating 4N/1S(thiolate) pentadentate ligand. The reaction of 1 with O(2) resulted in oxygenation of the thiolate donor to afford the doubly oxygenated sulfinate product [Fe(II)(N3PySO(2))(NCS)] (2), which was crystallographically characterized. The thiolate donor provided by the new N3PyS ligand has a dramatic influence on the redox potential and O(2) reactivity of this Fe(II) model complex.  相似文献   

5.
Liu J  Itoh J 《Talanta》2006,70(4):791-796
A kinetic method for the determination of cysteine on flow injection system is described. Cysteine was found as a catalyst for the complexation reaction of Cu(II) with an ultra sensitive colorimetric reagent of 5,10,15,20-tetrakis (4-N-trimethylammino-phenyl) porphyrin (TTMAPP) (varepsilon=4.8x10(5)cm(-1)M(-1) at 433nm), which was used as the indicator reaction in this paper. Soret band of either the porphyrin or the produced complex (varepsilon=4.6x10(5)cm(-1)M(-1) at 411nm) can be used for detection. The continuous flow injection system greatly enhanced the analytic precision and efficiency of the kinetic method, giving a relative standard deviation of 0.73% for a 0.1mugml(-1) cysteine with 10 injections at a throughput of 30h(-1). The detection limits (3S/N) in this case was 15ngml(-1) and the working dynamic range was over 25ngml(-1) to 1mugml(-1). Sugars, organic acids and amino acids that are possible in coexistence with cysteine could be tolerated at high concentrations. This method was critically compared with the Ellman's reagent in the determinations of cysteine contents of three pharmaceutical injections for hepatic diseases and one permanent wave agent and showed better applicability in the respect of matrix interferences.  相似文献   

6.
In this work, we present the first computational study on a biomimetic cysteine dioxygenase model complex, [Fe(II)(LN(3)S)](+), in which LN(3)S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O(2) was examined by density functional theory (DFT) methods and compared with results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet, and quintet spin state surfaces. The reaction mechanism is analogous to that found for cysteine dioxygenase enzymes (Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc. 2011, 133, 3869-3882); hence, the computations indicate that this complex can closely mimic the enzymatic process. The catalytic mechanism starts from an iron(III)-superoxo complex and the attack of the terminal oxygen atom of the superoxo group on the sulfur atom of the ligand. Subsequently, the dioxygen bond breaks to form an iron(IV)-oxo complex with a bound sulfenato group. After reorganization, the second oxygen atom is transferred to the substrate to give a sulfinic acid product. An alternative mechanism involving the direct attack of dioxygen on the sulfur, without involving any iron-oxygen intermediates, was also examined. Importantly, a significant energetic preference for dioxygen coordinating to the iron center prior to attack at sulfur was discovered and serves to elucidate the function of the metal ion in the reaction process. The computational results are in good agreement with experimental observations, and the differences and similarities of the biomimetic complex and the enzymatic cysteine dioxygenase center are highlighted.  相似文献   

7.
A simple and sensitive spectrofluorometric method was developed for the simultaneous determination of ascorbic acid and cysteine by a flow-injection system. This method is based on the reduction of Tl(III) with ascorbic acid or cysteine in acidic media, producing fluorescence reagent, TlCl3(2-) (lambdaex = 227 nm, lambdaem = 419 nm). The injected sample solution was divided into two separate streams. The first stream was treated with Tl(III) at pH 3.0 and then passed through a 270 cm reaction coil to the flow cell of the spectrofluorometer, where the fluorescence intensity was measured. This signal is related to ascorbic acid and cysteine concentration. The second part of the injected sample solution was treated with Tl(III) in HCl solution and then passed through a 50 cm reaction coil to the flow cell and the fluorescence intensity was measured. This signal is related only to cysteine. Thus, the ascorbic acid content was determined directly by the difference according to the calibration curve. Ascorbic acid and cysteine can be determined in the range of 1 x 10(-6) to 5.0 x 10(-5) M, at a rate of 16 samples per hour. The limits of detection (S/N = 3) were 8 x 10(-7) M for ascorbic acid and 7 x 10(-7) M for cysteine. The influence of potential interfering substances was studied. The proposed method was successfully applied to the simultaneous determination of both analytes in real samples.  相似文献   

8.
Cysteine sulfenic acid (Cys-SOH) is an elusive intermediate in reactive oxygen species-induced oxidation reactions of many proteins such as peroxiredoxins and tyrosine phosphatases. Cys-SOH is proposed to play a vital role in catalytic and signaling functions. The formation of cysteine sulfinic acid (Cys-SO(2)H) and cysteine sulfonic acid (Cys-SO(3)H) has been implicated in the activation of matrix metalloproteinase-7 (MMP-7) and oxidation of thiol to cysteine sulfinic acid has been associated with the autolytic cleavage of MMP-7. We have examined the formation of cysteine sulfenic acid in a synthetic peptide PRCGVPDVA, which is a cysteine switch domain of MMP-7 and other matrix metalloproteases. We have prepared the cysteine sulfenic acid containing peptide, PRC(SOH)GVPDVA, by reaction with hydroxyl radicals generated by the Fenton reaction (Fe(+2)/H(2)O(2)). We characterized this modified peptide by tandem mass spectrometry and accurate mass measurement experiments. In addition, we used 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl) reagent to form an adduct with PRC(SOH)GVPDVA to provide additional evidence for the viability of PRC(SOH)GVPDVA in solution. We also characterized an intramolecular cysteine sulfinamide cross-link product PRC[S(O)N]GVPDVA based on tandem mass spectrometry and accurate mass measurement experiments. These results contribute to the understanding of a proteolytic cleavage mechanism that is traditionally associated with MMP activation.  相似文献   

9.
Using an (R,S)-BINAPHOS-Rh(I) catalyst that is covalently anchored to a highly cross-linked polystyrene support, asymmetric hydroformylation of olefins was performed in the absence of organic solvents. The reaction of cis-2-butene, a gaseous substrate, provided (S)-2-methylbutanal with 100% regioselectivity and 82% ee upon treatment with H(2) (12 atm) and CO (12 atm) in a batchwise reactor equipped with a fixed bed. The polymer-supported catalyst was applicable to a continuous vapor-flow column reactor, and thus, 3,3,3-trifluoropropene was converted into (S)-2-trifluoromethylpropanal with an iso/normal ratio of 95/5 and 90% ee. Less volatile olefins, such as styrene, vinyl acetate, 1-alkenes, and fluorinated alkenes, were successfully converted into the corresponding isoaldehydes with high ee values, when they were injected through a supercritical CO(2)-flow column reactor. Successive injection of a series of olefins realized the conversion of an olefin library into an optically active aldehyde library.  相似文献   

10.
The electrochemical character of polyaniline/thiokol rubber (PANI/TR) composite film on a Pt electrode was investigated in a cysteine sulphuric acid solution by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The significant change of the peak current and peak potential in the cyclic voltammograms was observed. The irreversible peaks of cyclic voltammetry for cysteine/cystine redox couple at a platinum electrode have turned into one pair of nearly reversible peaks at the above electrode; the reversibility of the redox couple has been greatly improved. We found that thiokol rubber could improve the electrocatalysis of the PANI film to the electrochemical reaction with S‐S bonds, as well as the adhesion of the PANI film to the Pt substrate. Several effective factors, such as the concentration of thiokol rubber in the nonaqueous electrodeposition solution, different potential scan rate, immersing time of the film electrode in the studied electrolyte were all taken into account.  相似文献   

11.
To map the substrate specificity of cysteine proteases, two combinatorial peptide libraries were synthesized and screened using the archetypal protease, papain. The use of PEGA resin as the solid support for library synthesis facilitated the application of an on-resin fluorescence-quenched assay. Results from the screening of library 2 indicated a preference for Pro or Val in the S3 subsite and hydrophobic residues in S2; the most prevalent residue not being Phe but Val. The S1 subsite exhibited a dual specificity for both small, nonpolar residues, Ala or Gly, as well as larger, Gln, and charged residues, Arg. Small residues predominated in the S1'-S4' subsites. Active peptides from the libraries and variations thereof were resynthesized and their kinetics of hydrolysis by papain assessed in solution phase assays. Generally, there was a good correlation between the extent of substrate cleavage on solid phase and the kcat/KM's obtained in solution phase assays. Several good substrates for papain were obtained, the best substrates being Y(NO2)PMPPLCTSMK(Abz) (kcat/KM = 2109 (mM s)-1), Y(NO2)PYAVQSPQK(Abz) (kcat/KM = 1524 (mM s)-1), and Y(NO2)PVLRQQRSK(Abz) (kcat/KM = 1450 (mM s)-1). These results were interpreted in structural terms by the use of molecular dynamics (MD). These MD calculations indicated two different modes for the binding of substrates in the narrow enzyme cleft.  相似文献   

12.
Highly efficient and selective catalysts for the asymmetric reduction of aryl alkyl ketones under hydrogen-transfer conditions (2-propanol) were obtained by combining a novel class of pseudo-dipeptide ligands with [[RuCl(2)(p-cymene)](2)]. A library of 36 dipeptide-like ligands was prepared from N-Boc-protected alpha-amino acids and the enantiomers of 2-amino-1-phenylethanol and 1-amino-2-propanol. The catalyst library was evaluated with the reduction of acetophenone and excellent enantioselectivity of 1-phenylethanol was obtained with several of the novel catalysts. A ligand based on the combination of N-Boc-L-alanine and (S)-1-amino-2-propanol (ligand A-(S)-4) was found to be particular effective. When the situ formed ruthenium complex of this ligand was employed as the catalyst in the hydrogen-transfer reaction of various aryl alkyl ketones, the corresponding alcohol products were achieved in excellent enantioselectivity (up to 98 % ee).  相似文献   

13.
Cruzain is the major cysteine protease of Trypanosoma cruzi, which is the causative agent of Chagas disease and is a promising target for the development of new chemotherapy. With the goal of developing potent nonpeptidic inhibitors of cruzain, the substrate activity screening (SAS) method was used to screen a library of protease substrates initially designed to target the homologous human protease cathepsin S. Structure-based design was next used to further improve substrate cleavage efficiency by introducing additional binding interactions in the S3 pocket of cruzain. The optimized substrates were then converted to inhibitors by the introduction of cysteine protease mechanism-based pharmacophores. Inhibitor 38 was determined to be reversible even though it incorporated the vinyl sulfone pharmacophore that is well documented to give irreversible cruzain inhibition for peptidic inhibitors. The previously unexplored beta-chloro vinyl sulfone pharmacophore provided mechanistic insight that led to the development of potent irreversible acyl- and aryl-oxymethyl ketone cruzain inhibitors. For these inhibitors, potency did not solely depend on leaving group p K a, with 2,3,5,6-tetrafluorophenoxymethyl ketone 54 identified as one of the most potent inhibitors with a second-order inactivation constant of 147,000 s (-1) M (-1). This inhibitor completely eradicated the T. cruzi parasite from mammalian cell cultures and consequently has the potential to lead to new chemotherapeutics for Chagas disease.  相似文献   

14.
(S)-Naproxen-benzotriazole was synthesized by the reaction of (S)-naproxen with 1H-benzotriazole using coupling reagent dicyclohexyl carbodiimide and 4-dimethylamino pyridine (DCC/DMAP). It was used as chiral derivatizing reagent for microwave irradiated synthesis of diastereomers of penicillamine, cysteine and homocysteine. The diastereomers were separated by reversed phase high performance liquid chromatography using gradient elution of triethylammonium phosphate (pH 3.5)-acetonitrile (30-65% within 30 min). The method was validated for accuracy, precision, and limit of detection.  相似文献   

15.
Summary The applicability of a new chiral reagent to the resolution of amino acid enantiomers has been investigated. The new reagent, S(-)-N-1-(2-naphthylsulphonyl)-2-pyrrolidinecarbonyl chloride (NSP-C1), was synthesized by the chlorination of S(-)-N-1-(2-naphthylsulphonyl)-2-pyrrolidinecarboxylic acid which was prepared by the reaction of 2-naphthalene sulphonyl chloride with L-proline. Derivatization of the amino acids proceeds rapidly at ambient temperature and no racemization takes place during the reaction. The resolution of the diastereomeric amides was performed by TLC and normal phase HPLC. Complete resolutions were observed for the enantiomers of all amino acids examined except cysteine, cystine and histidine. The favourable UV absorption of the derivatives enabled the optical antipode to be determined down to the 0.1% level.  相似文献   

16.
A combinatorial split-and-mix library of peptide isosters based on a Diels-Alder reaction was synthesized as a "one-bead-two-compounds" library and encoded by ladder synthesis for facile analysis by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. In the "one-bead-two-compounds" library approach, each bead contains a library member as a putative protease inhibitor along with a fluorescence-quenched substrate for the protease. When the library was screened with CPB2.8 DeltaCTE, a recombinant cysteine protease from L. mexicana, several beads containing compounds with inhibitory activity could be selected from the library and analyzed by MALDI-TOF MS for structure elucidation. Two types of inhibitors were revealed. One novel class of inhibitors had the bicyclic Diels-Alder product isosteric element incorporated internally in a peptide, while the other type was an N-terminal alpha,beta-unsaturated ketone Michael acceptor used as starting material for the Diels-Alder reaction. Selected hit sequences and constructed consensus sequences based on the observed frequencies of amino acids in different subsites were resynthesized and assayed in solution for inhibitor activity and were shown to have IC(50) values in the high nanomolar to low micromolar range.  相似文献   

17.
A redox reaction of cysteine with iron(III) proceeds slowly in the presence of 1,10-phenanthroline (phen). However, this reaction is accelerated in the presence of copper(II) as a catalyst, producing an iron(II)-phen complex (lambda(max)=510 nm). A sensitive spectrophotometric flow-injection method is proposed for the determination of copper(II) based on its catalytic action on this redox reaction. The dynamic range was 0.1-10 ng ml(-1) of copper(II) with a relative standard deviation of 1.0% (n=10) for 1.0 ng ml(-1) of copper(II) at a sampling rate of 30 h(-1). The detection limit (S/N=3) is 0.04 ng ml(-1). The proposed method was successfully applied to the determination of copper in river water as a certified reference material.  相似文献   

18.
Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon–sulfur (C−S) and sulfur–oxygen (S−O) bond formation as well as carbon–hydrogen (C−H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C−S and C−Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.  相似文献   

19.
《Electroanalysis》2005,17(22):2052-2056
Controlled potential coulometry using carbon felt electrode impregnated with electrolytic solution realizes very rapid complete electrolysis and can be used to measure the faster reaction rate constant than that using conventional electrolytic cell. In this research, concentration step method was adopted to investigate coupling reaction rate of L ‐cysteine radical. The coupling reaction rate of L ‐cysteine radical becomes much larger than further electrode reaction rate of L ‐cysteine radical at high L ‐cysteine concentration, because the coupling reaction rate is proportional to the second order of L ‐cysteine radical concentration although the further electrode reaction rate is proportional to the first order of L ‐cysteine radical concentration. At a low constant potential value, apparent number of electrons (napp) increased from 1 (L ‐cystine is produced) to 2 (L ‐cysteine sulfenic acid, RSOH, may be produced) according to decrease in concentration of L ‐cysteine to be electrolyzed. The second order rate constant of coupling reaction was estimated to be about 1200 dm3 mol?1 s?1 at 20 °C by curve fitting method for napp vs. logarithm of L ‐cysteine concentration. Apparent number of electrons (napp) consumed in the electrode oxidation of L ‐cysteine gradually increased as an applied potential increases, because the consecutive electrode reaction steps with different electrode reaction rates were involved in the electrode oxidation of L ‐cysteine. In the present method, the constant limited electrolytic current was observed at high electrode potential range, which suggests that electrode oxidation rate of L ‐cysteine is kinetically controlled.  相似文献   

20.
Cysteine sulfenic acid has been generated in alkaline aqueous solution by oxidation of cysteine with hypohalous acid (HOX, X = Cl or Br). The kinetics and mechanisms of the oxidation reaction and the subsequent reactions of cysteine sulfenic acid have been studied by stopped-flow spectrophotometry between pH 10 and 14. Two reaction pathways were observed: (1) below pH 12, the condensation of two sulfenic acids to give cysteine thiosulfinate ester followed by the nucleophilic attack of cysteinate on cysteine thiosulfinate ester and (2) above pH 10, a pH-dependent fast equilibrium protonation of cysteine sulfenate that is followed by rate-limiting comproportionation of cysteine sulfenic acid with cysteinate to give cystine. The observation of the first reaction suggests that the condensation of cysteine sulfenic acid to give cysteine thiosulfinate ester can be competitive with the reaction of cysteine sulfenic acid with cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号