首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of Optical Cores of Silica Optical Fibers by the Sol-Gel Method   总被引:2,自引:0,他引:2  
Preforms for drawing silica optical fibers have been fabricated by using the MCVD method for the preparation of the optical claddings and the sol-gel method for the preparation of the optical cores consisting of TiO2−SiO2 or RE3+−Al2O3−P2O5−SiO2 (RE=Er, Yb) glasses. A novel method has been developed for depositing thin gel layers on the inner silica tube wall, under rotation of the tube inclined at a small angle to the horizontal. The gel layers have been deposited from sols prepared by mixing Si(OC2H5)4, POCl3, Ti(n-OC4H9)4, AlCl3, ErCl3, YbCl3 H2O, C2H5OH and HCl. The gel layers deposited using these sols on the inner tube wall were heat-treated in a flow of CCl4 or POCl3 with O2 at temperatures of from 800° to 1400°C. After collapsing the composite tube into a preform, an optical fiber has been drawn. The refractive-index profiles of the preforms and the attenuation spectra of the drawn fibers are shown, as well as some results on the lasing characteristics of Yb3+ sensitized, Er3+ doped fibers.  相似文献   

2.
Ceramic powders and gels in the multi-alumina system with different compositions were prepared by sol-gel method. The preparation of gels was done in strong acidic conditions and also with the addition of ammonia. The powders were prepared by dropping the sols on a hot plate. The effect of water/alkoxide and ethanol/alkoxide ratios was studied together with the type of catalyst used (hydrochloric acid or ammonia). The thermal evolution of materials was followed by thermal analysis, X-ray diffraction, specific surface area measurements and electron microscopy. The morphology of powders was also studied. The characteristic exothermic peak attributed to a good mixing degree of the Al and Si species was observed at ∼980°C. The intensity of this exothermic peak was more pronounced in gels than in sol-gel derived powders. The crystalline phases formed are related with the preparation conditions and with the thermal treatment. The crystallisation of mullite and transient phases of alumina were observed in powder samples heat treated at 1000°C while in gel samples mullite was the only crystalline phase detected.  相似文献   

3.
Proton-conducting materials produced by the sol-gel method were studied by spectroscopic methods. Films and xerogels were formed from silica sols modified with orthophosphoric and sulfuric acids, as well as with a mixture of these acids, with subsequent drying at room temperature and 150°C. The ionic conductivity of the xerogels and IR transmission of the films were examined.  相似文献   

4.
A previously proposed method for preparing monodispersed titania particles was extended to preparation of titania-coated silica spherical particles. The core silica particles with an average size of 264 nm were prepared with Stöber method. The titania-coating was performed in ethanol/acetonitrile solvent in the presence of silica particles by a sol-gel method with the use of titanium tetraisopropoxide (TTIP) and methylamine (MA) catalyst. Average size of the silica-titania particles decreased from 457 to 292 nm with an increase in concentration of silica particles. Coefficient of variation for the particle size was less than 5%. Colloidal crystals could be fabricated with a dip-coating technique and a sedimentation process, respectively. Measurements of reflectance revealed peaks based on the Bragg diffraction. Those peaks red-shifted with an increase in titania shell thickness because of a high refractive index of titania. Annealing at high temperature transformed crystal structure of titania shell from amorphous to anatase (500°C) and rutile (1000°C), which led to red-shift of reflection peak because of an increase in refractive index of titania due to the crystallization.  相似文献   

5.
Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher zeta potential (46.3 mV) were achieved with increasing TiO2 concentration up to 0.4 M. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) results of produced powders annealed at different temperatures showed that the 300°C annealed powder made from 0.1 M sol prepared at 50°C was a mixture of anatase and brookite, corresponding to a major phase of anatase (∼95% estimated), with the smallest average crystallite size of 1.3 nm and the highest specific surface area (SSA) of 193 m2/g. Furthermore, increasing TiO2 concentration up to 0.4 molar for the sols prepared at 70°C resulted in decreasing the average crystallite size (1.9 nm at 300°C) and increasing SSA (116 m2/g at 300°C) of the powders annealed at different temperatures. Anatase-to-rutile phase transformation temperature was increased with decreasing peptisation temperature down to 50°C, whereas TiO2 concentration had no effect on this transition. Anatase percentage increased with decreasing both peptisation temperature and TiO2 concentration. Such prepared powders can be used in many applications in areas from photo catalysts to gas sensors.  相似文献   

6.
Traditionally, various vacuum-based processes have been used for producing interference-type anti-reflection (AR) coatings on large area substrates for different commercial applications. In this paper, the development of sol-gel derived AR coating on large plastic substrates for display application is presented. The sol-gel dip coating process was used to deposit thin films on large size plastic panels. By developing sols with different refractive indices, multi-layer thin-film AR coating stacks were designed and fabricated. These coatings possess good uniformity and meet stringent automotive specifications. This technology has been commercialized successfully for dashboard instrument panel application in Toyota's new hybrid engine car, named Prius.In this paper, AR coatings prepared by the sol-gel process are reviewed. The basic design concept for an AR coating, the coating preparation procedure, and important parameters of the solution coating process are discussed. Optical constants of the coating materials were characterized by using spectroscopic ellipsometry. Optical, mechanical and environmental tests were performed on the sol-gel derived AR coating stack. The sol-gel derived AR coating possesses equivalent or superior properties when compared to the major commercially available AR coating products.  相似文献   

7.
Poly(L ‐lactic acid)/poly(D ‐lactic acid) (PLLA/PDLA) blended with plasticizer poly(ethylene glycol) and nucleation agent TMC‐306 as‐spun fibers were prepared by melt spinning. The posttreatment was applied by hot drawing at 70°C and then heat‐treating at different temperatures for 30 minutes. In the process of hot drawing, orientation induced the further formation of the sc crystals and increased the degree of crystallinity of drawn fibers. When the hot drawing ratio reached 3 times, the properties of the fibers were relatively better. The highly oriented fibers containing pure sc crystals with high crystallinity were obtained by heat‐treating at a temperature above the melting point of α crystals. The posttreated PLLA/PDLA fibers with poly(ethylene glycol) and TMC‐306 (LDTP) obtained by hot drawing to 3 times at 70°C and then annealing at 170°C for 30 minutes exhibited the best antioxidative degradation and heat resistance properties. The initial decomposition temperature (T5%) and heat resistance of posttreated LDTP fiber were about 94°C and 20°C higher than those of the commercial PLLA fiber, respectively.  相似文献   

8.
Optical cores of preforms for drawing optical fibers doped with Er3+ and Yb3+ were fabricated by the sol-gel method with the aim of increasing the thickness of glass layers coated in a single coating cycle and to determine the relation between the preparation conditions and optical properties of the fibers. Al2O3-P2O5-SiO2 and TiO2-P2O5-SiO2 glasses have been studied as matrices for entrapping the rare-earth elements. Input sols have been prepared from silicon and titanium alkoxides, AlCl3, ErCl3, YbCl3, POCl3, water and a modifier under acidic catalysis of HCl. The sols were coated on the inner wall of a silica substrate tube and the gel layers were sintered at high temperatures up to 2000°C after which the tube was collapsed into the preform. Continuous and homogenous glass films with the maximum thickness of about 8 m were fabricated. The influence of high-temperature heat treatment of the layers on their composition and optical attenuation was observed. The amplified stimulated emission of Er3+ around 1.55 m was measured under the excitation of the fibers by an Nd : YAG laser at 1.064 m.  相似文献   

9.
Diphasic gels prepared by mixing freshly prepared polymeric silica and polymeric boehmite sols through a modified Al-alkoxide route in mullite compositions led to the crystallization of mullite upon heat treatment at 775 °C. Mullite formation was observed at a 100 °C higher temperature when diphasic gels were formed by mixing aged polymeric sols containing about 2 nm in diameter boehmite species. These relatively low mullite formation temperatures were attributed to the nanoscale sizes of the polymeric species of the two amorphous phases present in the diphasic gels.  相似文献   

10.
The influence of key sol-gel synthesis parameters on the pore structure of microporous silica xerogels was investigated. The silica xerogels were prepared using an acid-catalyzed aqueous sol-gel process, with tetraethoxysilane (TEOS) as the silicon-containing precursor. At high H2O : TEOS ratios, sols synthesized at pH 2–3 yielded minimum values of mean micropore diameter and micropore volume. Analysis of the resulting Type I nitrogen adsorption isotherms and the equilibrium adsorption of N(C4F9)3 indicated micropore diameters for these xerogels of less than approximately 10 Å.Xerogel micropore volumes corresponding to sols prepared at pH 3 and an H2O : TEOS ratio of r = 83 were consistent with nearly close packing of silica spheres in the xerogel. Xerogel microstructure was only weakly dependent upon H2O : TEOS ratio during sol synthesis for r > 10. Xerogel micropore volume increased rapidly with sol aging time during an initial induction period of particle formation. However, the xerogel microstructure changed only slowly with time after this initial period, suggesting potential processing advantages for the particulate sol-gel route to porous silica materials.Surface adsorption properties of the silica xerogels were investigated at ambient temperature using N2, SF6, and CO2. CO2 adsorbed most strongly, SF6 also showed measurable adsorption, and N2 adsorption was nearly zero. These results were consistent with the surface transport of CO2, and to a lesser extent SF6, observed in gas permeation studies performed through thin membrane films cast from similarly prepared silica sols.  相似文献   

11.
溶胶-凝胶法原位生成SiO_2改性硅基耐烧蚀材料   总被引:1,自引:0,他引:1  
建立了在硅基耐烧蚀材料中用溶胶-凝胶法原位生成SiO2的方法.首先将硅橡胶、气相白炭黑、纤维等原料混炼硫化制备出硫化胶.然后将硫化胶依次浸入四氢呋喃、原硅酸乙酯和正丁基胺水溶液中进行预溶胀处理、物理扩散和化学反应,得到原位生成SiO2.SEM照片显示,在硅基耐烧蚀材料中原位生成的SiO2颗粒呈球形,粒径在40~60 nm,但分布不均匀,在硫化胶表层存在富集现象.实验结果表明,原位生成SiO2平均含量增加,硅基耐烧蚀材料的抗拉强度增加,线烧蚀率下降;含13.7%原位生成SiO2硅基耐烧蚀材料抗拉强度为5.82 MPa,线烧蚀率为0.071 mm/s.  相似文献   

12.
The darkening of silica sol-gel glasses doped with 0.05 mol% silver was studied. Six sols were prepared from TEOS and silver nitrate. Different additives were used, to influence the chemical and physical states of silver: oxidizing or reducing agents (H2O2, As2O5), colloid stabilizer (sodium citrate) and network modifiers (Li2O, CaO). Sols were gelified at 60°C and densified at 600°C. The samples without additives and those prepared with H2O2 at room temperature even if they were protected from light. With increased temperature, the darkening became samples were heated above, 400°C, reversible bleaching took place. This darkening-bleaching is of thermal nature (“thermochromic effect”) and seems to be determined by a reversible aggregation-disaggregation of tiny silver particles. The presence of sodium citrate, as an additive delayed the darkening effect and the presence of CaO delayed it even further. Lithium oxide inhibited it totally.  相似文献   

13.
In this article I describe two of our discoveries. The first is the preparation of a transparent solid material composed of an organic polymer and silica gel. A novel material called a “hybrid” has successfully been prepared by the sol-gel reaction of ethyl orthosilicate in the presence of an organic polymer consisting of repeating units having an N-alkylamide group. The molecular-level dispersion of the organic polymer in the framework of silica gel has been established, which is due to the hydrogen-bond interaction between the organic polymer and silanol group of silica gel. The second discovery is the preparation of porous silica gel, which has been achieved by calcination of the organic polymer-silica gel hybrid at 600°C. Pore sizes ranging from 10 to 20 Å have been attained. A method of controlling pore size has been proposed.  相似文献   

14.
Although commonly used in gas chromatography, open-tubular columns for liquid chromatography have seen their development hindered by a number of factors both theoretical and practical. Requiring small diameters, great lengths and specialized detection systems to achieve a proper chromatographic response, columns of this sort have largely been ignored despite the highly desirable column performance an optimized system would provide. Here, we introduce the use of microstructured fibers (MSFs) as a platform for the development of multiplexed open-tubular liquid chromatography (OTLC) columns. The multiple, parallel silica channels presented by the MSF act as a promising substrate for an OTLC column, as they have diameters near the ideal range for interactions (1–3 μm), minimize flow-induced backpressure through their many uniform paths, and increase the loading capacity compared to a single capillary channel of similar size. Additionally, with outer diameters comparable to regular fused silica capillaries, MSFs can easily be employed in conventional chromatographic systems, eliminating the need for specialized equipment. Finally, MSF columns of this type can be functionalized using silane coupling techniques to allow the introduction of a wide variety of stationary phase chemistries. While in this report we explore the potential and limitations of fluorine-functionalized MSFs as OTLC columns, other stationary phase materials could easily be substituted by choosing appropriate silanization reagents. Particular attention here will be paid to the physical and performance characteristics of the fabricated columns, as well as avenues for their improvement and implementation.  相似文献   

15.
YAG:Ce and YAG:Eu sols were synthesized by a polymeric sol-gel route. The crystallization temperature of YAG was determined by X-ray diffraction as a function of the calcination temperature, revealing that YAG starts to crystallize directly from the amorphous phase at 800?°C. The effects of the thermal treatment and the dopant amount on the photoluminescent properties were studied, observing the highest emission after calcination at 1000?°C for 1?h in both cases and with a concentration of 1 and 3?mol% of Ce and Eu, respectively. Core-shell materials were prepared by dipping YAG:Ce or YAG:Eu sintered pellets into the synthesized sols and then, these materials were calcined at 1000?°C for 1?h. An effective energy transfer from Ce to Eu was observed in the sample YAG:Eu (core)–YAG:Ce (shell) when blue light (λ?=?465?nm) is used as excitation source. This wavelength excites the Ce but not the Eu; however, in the photoluminescence emission spectrum, the bands associated to both ions can be clearly detected, confirming that the core-shell strategy is a good method for the preparation of warmer white LEDs.  相似文献   

16.
A new low-density silica core/yttria shell microspheres was developed for medical purposes. For preparing the core of this material, sol-emulsion-gel method was used. It was then calcined at 1,000 °C to increase the strength of the mesoporous beads. After cooling, it was added into a solution containing the mixture of yttrium chloride and urea. Under these circumstances, yttrium chloride can decompose to yttrium basic carbonate particles by the gradual hydrolysis of urea. These particles are able to deposit on the surface of mesoporous silica beads. Different coated samples were prepared under various pH, temperature and stirring conditions. Samples were heated to convert yttrium basic carbonate to yttria. The resulting silica core/yttria shell microspheres was characterized by laser diffractometer, scanning electron and optical microscopy techniques. It was found the pH of silica sols, aging time and Span-80 play important role in the stage of mesoporous bead preparation. Furthermore, the findings showed the heating of core/shell microspheres was essential for the ultimate strength of the shell. The in vitro chemical durability tests showed the release of yttrium ion in two simulated body fluids at pH 6 and 7 was negligible after 4 weeks.  相似文献   

17.
Thick silica films were fabricated by electrophoretic sol-gel deposition of silica particles on a stainless steel sheet. Using sols prepared by the sol-gel method with poly(acrylic acid) (PAA) films of ca. 25 m in thickness were prepared with no cracks. The films were shown to be agglomerates of monodispersed silica particles with PAA. The size of the silica particles decreased with an increase in the added amount of PAA. The deposited weight was considerably larger for the films with PAA than that of the films without PAA.  相似文献   

18.
Unsupported alumina membranes were prepared by sol-gel technique using aluminum isoproxide. The influence of the hydrolysis conditions, the type and concentration of peptizant acid on the boehmite sols has been studied. The suitable hydrolysis temperature for the aluminum isoproxide was above 50°C. Crack-free unsupported alumina membranes were obtained by rapid gelation processing of sols. The boehmite gel membrane and γ-Al2O3 membrane formed exhibited (020) and (440) preferred orientation.  相似文献   

19.
The sol–gel method has been used for the synthesis of borosilicate gels from mixtures of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) and boric acid. The use of boric acid, B(OH)3 allows the hydrolysis and condensation of hybrid silicon alkoxides without further addition of water or catalyst. The use of difunctional silicon units, –(CH3)2SiO– promote the formation, during the sol–gel process, of linear oligomers which facilitate fiber drawing before gelation. Gel characterization performed by FT-IR, XRD, TG-DTA and DCS analysis indicates the formation of a mixed network with incorporation of the boron units via =B-O-Si≡ bridges. The formation of borosiloxane bonds seems favored by the presence of DMDES. SiBOC glasses were obtained after pyrolysis of the borosilicate gels in argon atmosphere at 1000 °C. TG-DTA study indicates that the ceramic yield decreases by increasing the amount of DMDES. Gel fibers were successfully prepared from convenient partially-aged solutions by hand drawing. Pyrolysis of the obtained gel fibers under argon atmosphere at 1000 °C open the possibility to produce SiBOC homogeneous glass fibers with diameter as low as 10 μm.  相似文献   

20.
The paper reports effects of high-temperature treatment of silica layers doped with Al2O3, P2O5, Yb and Er ions, which are coated inside silica substrate tubes and transformed through viscous flow into the core of a preform, on properties of these cores. The gel layers are applied inside the silica substrate tubes from sols based on tetraethoxysilane and corresponding chlorides in isopropanol by controlled lowering the column of the sol. The layers are thermally treated at 500°C and subject to high-temperature treatment from 1000 to 1300°C. The tube with the layers is collapsed into a preform from which fibers are drawn at about 1950°C. The results of concentration measurements show that during the high-temperature treatment the content of silica in the layer increases at least five times in comparison with that of the sol composition. This effect depends on the sol composition and the number of the coated gel layers. Measurements show that in the prepared fibers there is some remaining unsaturated absorption of erbium ions at 1535 nm, which is related to quenching of the erbium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号