首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of the previously reported cluster complexes [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I, trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)], and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)] with the [Re(6)(mu(3)-Se)(8)](2+) core with CO in the presence of AgSbF(6) afforded the corresponding cluster carbonyls [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) (), trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (), and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (). Infrared spectroscopy indicated weakening of the bond in CO, suggesting the existence of backbonding between the cluster core and the CO ligand(s). Electrochemical studies focusing on the reversible, one-electron oxidation of the cluster core revealed a large increase in the oxidation potential upon going from the acetonitrile derivatives to their carbonyl analogs, consistent with the depleted electron density of the cluster core upon CO ligation. Disparities between the IR spectra and oxidation potential between and indicate that electronic differences exist between sites trans and cis to the location of a ligand of interest. The active role played by the Se atoms in influencing the cluster-to-CO bonding interactions is suggested through this result and density functional (DF) computational analysis. The computations indicate that molecular orbitals near the HOMO account for backbonding interactions with a high percentage of participation of Se orbitals.  相似文献   

2.
The reaction between the previously reported site-differentiated cluster solvate [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(MeCN)](SbF(6))(2) (1) with pyridyl-based ditopic ligands 4,4'-trimethylenedipyridine (2), 1,2-bis(4-pyridyl)ethane (3), and (E)-1,2-bis(4-pyridyl)ethene (4) afforded cluster complexes of the general formula [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(L)](SbF(6))(2) (5-7), where L represents one of the pyridyl-based ligands. Reacting these cluster complex-based ligands with the fully solvated cluster complex [Re(6)(mu(3)-Se)(8)(MeCN)(6)](SbF(6))(2) (8) produced dendritic arrays of the general formula {Re(6)(mu(3)-Se)(8)[Re(6)(mu(3)-Se)(8)(PEt(3))(5)(L)](6)}(SbF(6))(14) (9-11), each featuring six circumjacent [Re(6)(mu(3)-Se)(8)(PEt(3))(5)](2+) units bridged to a [Re(6)(mu(3)-Se)(8)](2+) core cluster by the pyridyl-based ligands. Electrochemical studies using a thin-layer electrochemical cell revealed cluster-based redox events in these cluster arrays. For 9 (L = 2), one reversible oxidation event corresponding to the removal of 7 electrons was observed, indicating noninteraction or extremely weak interactions between the clusters. For 10 (L = 3), two poorly resolved oxidation waves were found. For 11 (L = 4), two reversible oxidation events, corresponding respectively to the removal of 1 and 6 electrons, were observed with the 1-electron oxidation event occurring at a potential 150 mV more positive than the 6-electron oxidation. These electrochemical studies suggest intercluster coupling in 11 via through-bond electronic delocalization, which is consistent with electronic spectroscopic studies of this same molecule.  相似文献   

3.
Orto PJ  Nichol GS  Wang R  Zheng Z 《Inorganic chemistry》2007,46(21):8436-8438
The first [Re(6)(mu(3)-Se)(8)](2+) core-containing cluster carbonyls, [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) and trans-[Re(6)(mu(3)-Se)(8)(PEt(3))4(CO)(2)][SbF(6)](2), were produced by reacting [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I and trans-[Re(6)(mu(3)-Se)8(PEt(3))(4)I2], respectively, with AgSbF(6) in CO-saturated dichloromethane solutions. Spectroscopic and crystallographic studies suggest significant cluster-to-CO back-donation in these novel cluster derivatives and interesting electronic structures. Thermal and photolytic studies of the mono-carbonyl complex revealed its interesting and synthetically useful reactivity in producing new cluster derivatives.  相似文献   

4.
The addition of methanol and ethanol to the previously reported cluster solvates [Re6(mu3-Se)8(PEt3)5(MeCN)](SbF6)2 and trans-[Re6(mu3-Se)8(PEt3)4(CH3CN)2][SbF6]2 afforded three cluster complexes with imino ester ligands: {Re6(mu3-Se)8(PEt3)5[HN=C(OCH3)(CH3)]}(SbF6)2, {Re6(mu3-Se)8(PEt3)5[HN=C(OCH2CH3)(CH3)]}{SbF6}2, and trans-{Re6(mu3-Se)8(PEt3)4[HN=C(OCH3)(CH3)]2}{SbF6}2. In all cases, predominant formation of the Z isomers was observed.  相似文献   

5.
Ligand substitution of [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CH(3)CN)](SbF(6))(2) (1) with pyridyl-based ligands, 2,4,6-tri-4-pyridyl-1,3,5-triazine (L1) and 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (L2), produced respectively the star-shaped tricluster (T1) and tetracluster (T2) arrays, wherein three (T1) and four (T2) units of the [Re(6)(mu(3)-Se)(8)](2+) core-containing clusters are interconnected by the corresponding bridging ligands. These novel supramolecular assemblies were characterized by a combination of NMR ((1)H and (31)P) spectroscopy, ESI-MS, and microanalysis. The molecular and solid-state structures of T1 have also been established by single-crystal X-ray diffraction.  相似文献   

6.
The reaction of [Re6(mu3-Se)8(PEt3)5(MeCN)](SbF6)2 with an excess of 1,2-bis(4-pyridyl)ethane (L1) and (E)-1,2-bis(4-pyridyl)ethene (L2) produced [Re6(mu3-Se)8(PEt3)5(L1)](SbF6)2 and [Re6(mu3-Se)8(PEt3)5(L2)](SbF6)2, respectively, each bearing an accessible pyridyl N atom capable of further metal coordination. Reacting these cluster complex-based ligands with [Re6(mu3-Se)8(MeCN)6](SbF6)2 afforded two heptacluster metallodendrimers, each featuring a central [Re6(mu3-Se)8]2+ cluster core surrounded by six units of [Re6(mu3-Se)8(PEt3)5]2+ via the bridging interactions of its respective dipyridyl-based ligands. Their identity and stereochemistry have been established, with the most convincing evidence furnished by a unique 77Se NMR spectroscopic study. Electrochemical studies suggest very interesting electronic properties of these novel metallodendrimers.  相似文献   

7.
The reactions of nitrile complexes of the [Re(6)(μ(3)-Se)(8)](2+) core-containing clusters, [Re(6)(μ(3)-Se)(8)(PEt(3))(n)(CH(3)CN)(6-n)](2+) [n = 5 (1); n = 4, cis- (2) and trans- (3); n = 0 (4)], with organic azides C(6)H(5)CH(CH(3))N(3) and C(6)H(5)CH(2)N(3) produced the corresponding cationic imino complexes of the general formula [Re(6)(μ(3)-Se)(8)(PEt(3))(n)(L)(6-n)](2+) [L = PhN=CHCH(3): n = 5 (5); n = 4, cis- (6) and trans- (7); n = 0 (8) and L = HN=CHPh: n = 5 (9); n = 4, cis- (10) and trans- (11)]. These novel complexes were characterized by NMR spectroscopy ((1)H and (31)P) and single-crystal X-ray diffraction. A mechanism involving the migration of one of the groups on the azido α-C atom to the α-N atom of the azido complex, concerted with the photo-expulsion of N(2), was invoked to rationalize the formation of the imino complexes. Density functional theory (DFT) calculations indicated that due to the coordination with and activation by the cluster core, the energy of the electronic transition responsible for the photo-decomposition of a cluster-bound azide is much reduced with respect to its pure organic counterpart. The observed geometric specificity was rationalized by using the calculated and optimized preferred ground-state conformation of the cluster-azido intermediates.  相似文献   

8.
A complex containing the face-capped octahedral [Re(6)(mu(3)-Se)(8)](2+) cluster core, cis-[Re(6)(mu(3)-Se)(8)(PPh(3))(4)(4,4'-dipyridyl)(2)](SbF(6))(2) (1), is used as a ditopic ligand with an enforced right angle between the two 4,4'-dipyridyl moieties for the coordination of Cd(2+) ion. Two coordination polymers, [[Re(6)(mu(3)-Se)(8)(PPh(3))(4)(4,4'-dipyridyl)(2)](2)[Cd(NO(3))(2)]](SbF(6))(4).21C(4)H(10)O.21CH(2)Cl(2) (2) and [[Re(6)(mu(3)-Se)(8)(PPh(3))(4)(4,4'-dipyridyl)(2)][Cd(NO(3))(3)]](NO(3)).2C(4)H(10)O.CH(2)Cl(2) (3), are obtained. The relative concentration of Cd(2+) determines which species is isolated, and the conversion of the first structure into the second is demonstrated experimentally.  相似文献   

9.
The preparation of two new families of hexanuclear rhenium cluster complexes containing benzonitrile and phenyl-substituted tetrazolate ligands is described. Specifically, we report the preparation of a series of cluster complexes with the formula [Re(6)Se(8)(PEt(3))(5)L](2+) where L = benzonitrile, p-aminobenzonitrile, p-methoxybenzonitrile, p-acetylbenzonitrile, or p-nitrobenzonitrile. All of these complexes undergo a [2 + 3] cycloaddition with N(3)(-) to generate the corresponding [Re(6)Se(8)(PEt(3))(5)(5-(p-X-phenyl)tetrazol-2-yl)](+) (or [Re(6)Se(8)(PEt(3))(5)(2,5-p-X-phenyltetrazolate)](+)) cluster complexes, where X = NH(2), OMe, H, COCH(3), or NO(2). Crystal structure data are reported for three compounds: [Re(6)Se(8)(PEt(3))(5)(p-acetylbenzonitrile)](BF(4))(2)?MeCN, [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4))?CH(2)Cl(2), and [Re(6)Se(8)(PEt(3))(5)(2,5-p-aminophenyltetrazolate)](BF(4)). Treatment of [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4)) with HBF(4) in CD(3)CN at 100 °C leads to protonation of the tetrazolate ring and formation of [Re(6)Se(8)(PEt(3))(5)(CD(3)CN)](2+). Surprisingly, alkylation of the phenyl and methyl tetrazolate complexes ([Re(6)Se(8)(PEt(3))(5)(2,5-N(4)CPh)](BF(4)) and [Re(6)Se(8)(PEt(3))(5)(1,5-N(4)CMe)](BF(4))) with methyl iodide and benzyl bromide, leads to the formation of mixtures of 1,5- and 2,5-disubstituted tetrazoles.  相似文献   

10.
Gray TG  Holm RH 《Inorganic chemistry》2002,41(16):4211-4216
The site-differentiated, cyanide-substituted hexanuclear rhenium(III) selenide clusters cis- and trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)] and [Re(6)Se(8)(PEt(3))(5)(CN)](+) have been prepared from heterogeneous reactions of the corresponding iodo clusters with AgCN in refluxing chloroform. Isolated yields are 68%, 46%, and 64% for cis-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], and [Re(6)Se(8)(PEt(3))(5)(CN)](+), respectively. The new compounds are air- and water-stable and are characterized by X-ray diffraction crystallography, (31)P NMR and IR spectroscopies, and FAB mass spectrometry. In related work, the solvent exchange rates of two site-differentiated monosolvate clusters, [Re(6)Se(8)(PEt(3))(5)(MeCN)](SbF(6))(2) and [Re(6)Se(8)(PEt(3))(5)(Me(2)SO)](SbF(6))(2), in neat solvents were measured by (1)H NMR. These clusters are substitutionally inert; k approximately 10(-)(5)-10(-)(6) s(-)(1) at 318 K. Activation parameters indicate a dissociative ligand exchange mechanism; DeltaH() values obtained from least-squares fitting of temperature-dependent kinetics data exceed RT by a factor of ca. 50 over the temperature range studied. These results demonstrate that the substitutional lability encountered in a previous study of cluster photophysics (Gray, T. G.; Rudzinski, C. M.; Nocera, D. G.; Holm, R. H. Inorg. Chem. 1999, 38, 5932) cannot result from ground-state thermal reactions.  相似文献   

11.
The clusters [Fe(6)S(8)(PEt(3))(6)](+,2+) have been shown by other investigators to be formed by the reaction of [Fe(OH(2))(6)](2+) and H(2)S, to contain face-capped octahedral Fe(6)S(8) cores, and to be components of the five-membered electron transfer series [Fe(6)S(8)(PEt(3))(6)](n)()(+) (n = 0-4) estalished electrochemically. We have prepared two additional series members. Reaction of [Fe(6)S(8)(PEt(3))(6)](2+) with iodine in dichloromethane affords [Fe(6)S(8)(PEt(3))(6)](3+), isolated as the perchlorate salt (48%). Reduction of [Fe(6)S(8)(PEt(3))(6)](2+) with Na(Ph(2)CO) in acetonitrile/THF produces the neutral cluster [Fe(6)S(8)(PEt(3))(6)] (65%). The structures of the four clusters with n = 0, 1+, 2+, 3+ were determined at 223 K. The compounds [Fe(6)S(8)(PEt(3))(6)](ClO(4))(3), [Fe(6)S(8)(PEt(3))(6)] crystallize in trigonal space group R&thremacr;c with a = 21.691(4), 16.951(4) ?, c = 23.235(6), 19.369(4) ?, and Z = 6, 3. The compounds [Fe(6)S(8)(PEt(3))(6)](BF(4))(2), [Fe(6)S(8)(PEt(3))(6)](BF(4)).2MeCN were obtained in monoclinic space groups P2(1)/c, C2/c with a = 11.673(3), 16.371(4) ?, b = 20.810(5), 16.796(4) ?, c = 12.438(4), 23.617(7) ?, beta = 96.10(2), 97.98(2) degrees, and Z = 2, 4. [Fe(6)S(8)(PEt(3))(6)](BPh(4))(2) occurred in trigonal space group P&onemacr; with a = 11.792(4) ?, b = 14.350(5) ?, c = 15.536(6) ?, alpha = 115.33(3) degrees, beta = 90.34(3) degrees, gamma = 104.49(3) degrees, and Z = 1. Changes in metric features across the series are slight but indicate increasing population of antibonding Fe(6)S(8) core orbitals upon reduction. Zero-field M?ssbauer spectra are consistent with this result, isomer shifts increasing by ca. 0.05 mm/s for each electron added, and indicate a delocalized electronic structure. Magnetic susceptibility measurements together with previously reported results established the ground states S = (3)/(2) (3+), 3 (2+), (7)/(2) (1+), 3 (0). The clusters [Fe(6)S(8)(PEt(3))(6)](n)()(+) possess the structural and electronic features requisite to multisequential electron transfer reactions. This work provides the first example of a cluster type isolated over four consecutive oxidation states. Note is also made of the significance of the [Fe(6)S(8)(PEt(3))(6)](n)()(+) cluster type in the development of iron-sulfur-phosphine cluster chemistry.  相似文献   

12.
Hexarhenium(III) complexes with terminal isothiocyanate ligands, [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)(NCS)(6)] (1) and (L)(4)[Re(6)(mu(3)-Se)(8)(NCS)(6)] (L(+) = PPN(+) (2a), (n-C(4)H(9))(4)N(+) (2b)), have been prepared by three different methods. Complex 1 was prepared by the reaction of [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] with molten KSCN at 200 degrees C, while 2b was obtained by refluxing the chlorobenzene-DMF (2:1 v/v) solution of [Re(6)(mu(3)-Se)(8)(CH(3)CN)(6)](SbF(6))(2) and [(n-C(4)H(9))(4)N]SCN. The [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-) anion was also obtained from a mixture of Cs(2)[Re(6)(mu(3)-Se)(8)Br(4)] and KSCN in C(2)H(5)OH by a mechanochemical activation at room temperature for 20 h and isolated as 2a. The X-ray structures of 1 and 2a.4DMF have been determined (1, C(70)H(144)N(10)S(14)Re(6), monoclinic, space group P2(1)/n (No. 14), a = 14.464(7) A, b = 22.059(6) A, c = 16.642(8) A, beta = 113.62(3) degrees, V = 4864(3) A(3), Z = 2; 2a.4DMF, C(162)H(144)N(14)O(4)P(8)S(6)Se(8)Re(6), triclinic, space group P1 (No. 2), a = 15.263(2) A, b = 16.429(2) A, c = 17.111(3) A, alpha = 84.07(1) degrees, beta = 84.95(1) degrees, gamma = 74.21(1) degrees, V = 4098.3(8) A(3), Z = 1). All the NCS(-) ligands in both complexes are coordinated to the metal center via nitrogen site with the Re-N distances in the range of 2.07-2.13 A. The redox potentials of the reversible Re(III)(6)/Re(III)(5)Re(IV) process in acetonitrile are +0.84 and +0.70 V vs. Ag/AgCl for [Re(6)(mu(3)-S)(8)(NCS)(6)](4)(-) and [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-), respectively, which are the most positive among the known hexarhenium complexes with six terminal anionic ligands. The complexes show strong red luminescence with the emission maxima (lambda(max)/nm), lifetimes (tau(em)/micros), and quantum yields (phi(em)) being 745 and 715, 10.4 and 11.8, and 0.091 and 0.15 for 1 and 2b, respectively, in acetonitrile. The data reasonably well fit in the energy-gap plots of other hexarhenium(III) complexes. The temperature dependence of the emission spectra and tau(em) of 1 and [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] are also reported.  相似文献   

13.
The first face-capped octahedral clusters with 25 metal-based valence electrons are shown to provide versatile building units capable of engaging in magnetic exchange coupling. Reactions of [Re(5)OsSe(8)Cl(6)](3-) and [Re(4)Os(2)Se(8)Cl(6)](2-) with NaCN in a melt of NaNO(3) or KCF(3)SO(3) afford the 24-electron clusters [Re(5)OsSe(8)(CN)(6)](3-) and [Re(4)Os(2)Se(8)(CN)(6)](2-). The 13C NMR spectrum of a 13C-labeled version of the latter species indicates a 1:2 mixture of cis and trans isomers. Cyclic voltammograms of the clusters in acetonitrile display reversible [Re(5)OsSe(8)(CN)(6)](3-/4-), cis-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-), and trans-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-) couples at E(1/2) = -1.843, -0.760, and -1.031 V vs FeCp(2)(0/+), respectively, in addition to other redox processes. Accordingly, reduction of [Re(5)OsSe(8)(CN)(6)](3-) with sodium amalgam and [Re(4)Os(2)Se(8)(CN)(6)](2-) with cobaltocene produces the 25-electron clusters [Re(5)OsSe(8)(CN)(6)](4-) and [Re(4)Os(2)Se(8)(CN)(6)](3-). EPR spectra of these S = 1/2 species in frozen DMF solutions exhibit isotropic signals with g = 1.46 for the monoosmium cluster and g = 1.74 and 1.09 for the respective cis and trans isomers of the diosmium cluster. In each case, results from DFT calculations show the unpaired spin to delocalize to some extent into the pi* orbitals of the cyanide ligands, suggesting the possibility of magnetic superexchange. Reaction of [Re(5)OsSe(8)(CN)(6)](3-) with [Ni(H(2)O)(6)](2+) in aqueous solution generates the porous Prussian blue analogue Ni(3)[Re(5)OsSe(8)(CN)(6)](2).32H(2)O; however, the tendency of the 25-electron clusters to oxidize in water prohibits their use in reactions of this type. Instead, a series of cyano-bridged assemblies, [Re(6-n)Os(n)Se(8)[CNCu(Me(6)tren)](6)](9+) (n = 0, 1, 2; Me(6)tren = tris(2-(dimethylamino)ethyl)amine), were synthesized to permit comparison of the exchange coupling abilities of clusters with 23-25 electrons. As expected, the results of magnetic susceptibility measurements show no evidence for exchange coupling in the assemblies containing the 23- and 24-electron clusters, but reveal the presence of weak ferromagnetic coupling in [Re(4)Os(2)Se(8)[CNCu(Me(6)tren)](6)](9+). Assuming all cluster-Cu(II) exchange interactions to be equivalent, the data were fit to give an estimated coupling strength of J = 0.4 cm(-1). To our knowledge, the ability of such clusters to participate in magnetic exchange coupling has never previously been demonstrated.  相似文献   

14.
The compound [(CH(3))C(NH(2))(2)](4)[Re(6)Se(8)(CN)(6)] has been synthesized by the reaction at 200 degrees C for 3 days of Re(4)Te(4)(TeCl(2))(4)Cl(8), KSeCN, and NH(4)Cl in superheated acetonitrile. This compound crystallizes in the space group C2/c of the monoclinic system with four formula units in a cell of dimensions a = 20.3113(14) A, b = 10.1332(7) A, c = 19.9981(14) A, beta = 106.754(1) degrees, V = 3941.3(5) A(3) (T = 153 K). The [Re(6)Se(8)(CN)(6)](4-) anion comprises an Re(6) octahedron face capped by mu(3)-Se atoms, with each Re atom liganded by a CN group. The anions and cations are connected by an extensive network of hydrogen bonds. The conversion of a Re(IV) tetrahedral cluster to a Re(III) octahedral cluster appears to be unprecedented.  相似文献   

15.
A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.  相似文献   

16.
The first triethylphosphine-stabilized Pt-Au cluster compounds, [Pt(AuPEt(3))(10)](2+) (2) and [Pt(AuPEt(3))(9)](3+) (3), were prepared by the direct reaction of Pt(PEt(3))(3) with AuPEt(3)NO(3) under a dihydrogen atmosphere. Cluster 2 is the highest-nuclearity homoleptic Pt(AuPR(3))(n)() cluster yet prepared. The reactivity and structures of these clusters are in agreement with the well-established electron-counting arguments. The 18-electron cluster 2 was converted into the 16-electron cluster 3 by oxidation with 2 equiv of ferricinium ion [Fe(eta(5)-C(5)H(5))(2)](+). Cluster 3 was converted into 2 by reduction with H(2) in the presence of [AuPEt(3)](+). Cluster 3 was also observed to cleanly add the 2-electron donors CO and PEt(3) to form the 18-electron clusters [(CO)Pt(AuPEt(3))(9)](3+) (4) and [(PEt(3))Pt(AuPEt(3))(9)](3+) (5), respectively. Single-crystal X-ray diffraction results show that 3 has a flattened, toroidal structure in which the PtAu(9) framework has a Pt-centered, tricapped trigonal prismatic geometry. Crystal data for [Pt(AuPEt(3))(9)](NO(3))(3) is as follows: hexagonal P6(3)/m, a = 15.134(5) ?, c = 23.48(1) ?, V = 4657 ?(3), Z = 2, residuals R = 0.056, and R(w)() = 0.053 for 1489 observed reflections and 81 variables, Mo Kalpha radiation. Compound 3 was found to reversibly add H(2) in solution to form the dihydride cluster [(H)(2)Pt(AuPEt(3))(9)](3+) (6). The equilibrium constant for this addition reaction is 1.1 x 10(3) M(-)(1) (CD(2)Cl(2) solution, 25 degrees C), slightly smaller than that for [Pt(AuPPh(3))(8)](2+). The rate of the addition is also slower than that with [Pt(AuPPh(3))(8)](2+). Cluster 3 is an excellent homogeneous catalyst for H(2)-D(2) equilibration giving a turnover rate for HD production of 0.13 s(-)(1) (nitrobenzene solvent, 30 degrees C, 1 atm). The PEt(3)-containing clusters give similar rates and follow the same general trends previously observed with PPh(3)-ligated clusters. The chemistry of these new clusters is explained by consideration of the steric and electronic properties of the PEt(3) ligand. These new compounds will be useful as models for hydrogen activation by Pt-Au clusters and as precursors for supported Pt-Au catalysts.  相似文献   

17.
Reaction of the edge-bridged double cubane cluster [(Tp)(2)M(2)Fe(6)S(8)(PEt(3))(4)] (1; Tp = hydrotris(pyrazolyl)borate(1-)) with hydrosulfide affords the clusters [(Tp)(2)M(2)Fe(6)S(9)(SH)(2)](3)(-)(,4)(-) (M = Mo (2), V), which have been established as the first structural (topological) analogues of the P(N) cluster of nitrogenase. The synthetic reaction is an example of core conversion, resulting in the transformation M(2)Fe(6)(mu(3)-S)(6)(mu(4)-S)(2) (C(i)) --> M(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S) (C(2)(v)), the reaction pathway of which is unknown. The most prominent structural feature of P(N)-type clusters is the mu(6)-S atom, which bridges six iron atoms in two MFe(3)S(3) cuboidal halves of the cluster. The initial issue in core conversion is the origin of the mu(6)-S atom. Utilizing SeH(-) as a surrogate reactant for SH(-) in the system 1/SeH(-)/L(-) in acetonitrile, a series of selenide clusters [(Tp)(2)Mo(2)Fe(6)S(8)SeL(2)](3)(-) (L(-) = SH(-) (4), SeH(-) (5), EtS(-) (6), CN(-) (7)) was prepared. The electrospray mass spectra of 4 and 6 revealed inclusion of one Se atom in each cluster, and (1)H NMR spectra and crystallographic refinements of 4-7 indicated that this atom was disordered over the two mu(2)-S/Se positions. The clusters {[(Tp)(2)Mo(2)Fe(6)S(9)](mu(2)-S)}(2)(5)(-) (8) and {[(Tp)(2)Mo(2)Fe(6)S(8)Se](mu(2)-Se)}(2)(5)(-) (9) were prepared from 2 and 5, respectively, and shown to be isostructural. They consist of two P(N)-type cluster units bridged by two mu(2)-S or mu(2)-Se atoms. It is concluded that, in the preparation of 2, the probable structural fate of the attacking nucleophile is as a mu(2)-S atom, and that the mu(3)-S and mu(6)-S atoms of the product cluster derive from precursor cluster 1. Cluster fragmentation during P(N)-type cluster synthesis is unlikely.  相似文献   

18.
19.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

20.
The structures of the P cluster and cofactor cluster of nitrogenase are well-defined crystallographically. They have been obtained only by biosynthesis; their chemical synthesis remains a challenge. Synthetic routes are sought to the P cluster in the P(N) state in which two cuboidal Fe(3)S(3) units are connected by a mu(6)-S atom and two Fe-(mu(2)-S(Cys))-Fe bridges. A reaction scheme affording a Mo(2)Fe(6)S(9) cluster in molecular form having the topology of the P(N) cluster has been devised. Reaction of the single cubane [(Tp)MoFe(3)S(4)Cl(3)](1)(-) with PEt(3) gives [(Tp)MoFe(3)S(4)(PEt(3))(3)](1+) (2), which upon reduction with BH(4)(-) affords the edge-bridged all-ferrous double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] (4) (Tp = tris(pyrazolylhydroborate(1-)). Treatment of 4 with 3 equiv of HS(-) produces [(Tp)(2)Mo(2)Fe(6)S(9)(SH)(2)](3)(-) (7) as the Et(4)N(+) salt in 86% yield. The structure of 7 is built of two (Tp)MoFe(3)(mu(3)-S)(3) cuboidal fragments bridged by two mu(2)-S atoms and one mu(6)-S atom in an arrangement of idealized C(2) symmetry. The cluster undergoes three one-electron oxidation reactions and is oxidatively cleaved by p-tolylthiol to [(Tp)MoFe(3)S(4)(S-p-tol)(3)](2)(-) and by weak acids to [(Tp)MoFe(3)S(4)(SH)(3)](2-). The cluster core of 7 has the bridging pattern [Mo(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S)](1+) with the probable charge distribution [Mo(3+)(2)Fe(2+)(5)Fe(3+)S(9)](1+). Cluster 7 is a topological analogue of the P(N) cluster but differs in having two heteroatoms and two Fe-(mu(2)-S)-Fe instead of two Fe-(mu(2)-S(Cys))-Fe bridges. A best-fit superposition of the two cluster cores affords a weighted rms deviation in atom positions of 0.38 A. Cluster 7 is the first molecular topological analogue of the P(N) cluster. This structure had been prepared previously only as a fragment of complex high-nuclearity Mo-Fe-S clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号