首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
"An in situ polymerization process was used to prepare poly (methyl methacrylate) (PMMA)-functionalized carboxyl multi-walled carbon nanotubes using carboxylate carbon nanotubes and methyl methacrylate as reactants and benzoyl peroxide as an initiator agent. The functionalized multi-walled carbon nanotubes were characterized using transmission electron microscope, scanning electron microscope, nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman. The results indicate that the PMMA chains are covalently linked with the surface of carboxylate carbon nanotubes. The surface morphology is controlled by the content of carboxylate carbon nanotubes in the reactants. The PMMA functionalized multi-walled carbon nanotubes are soluble in deuterated chloroform. The storage modulus and tanffi magnitude increase as the content of CCNTs increases up to 0.3%."  相似文献   

2.
Short length vapor‐grown carbon nanofibers (VGCNFs) were functionalized with 4‐aminobenzoic acid in polyphosphoric acid/phosphorous phentoxide medium via “direct” Friedel‐Crafts acylation reaction to afford aminobenzoyl‐functionalized VGCNFs (AF‐VGCNFs). The AF‐VGCNFs as a cocuring agent were mixed with epoxy resin by simple mechanical stirring in methanol which was added to help efficient mixing. After evaporation of methanol, 4,4′‐methylenedianiline as a curing agent was added to the mixture, which was then cured at elevated temperatures. The resultant composites displayed uniform dispersion of AF‐VGCNFs into cured epoxy matrix. During curing process, the amine functionalities on AF‐VGCNF together with 4,4′‐methylenedianiline were expected to be involved in covalent attachment to the epoxy resin. As a result, both tensile modulus and strength of the composites were improved when compared with those of pure epoxy resin. Thus, the AF‐VGCNFs play a role as an outstanding functional additive, which could resolve both dispersion and interfacial adhesion issues at the same time by functionalization of VGCNFs and covalent bonding between the additive and matrix, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7473–7482, 2008  相似文献   

3.
"The composites of hollow glass microspheres coated with NiFe2O4 nanoparticles were prepared using polyacrylamide gel method. The structural characteristics, morphology and electromagnetic properties of the composite powders with different weight percent of glass microspheres (15%, 40%, and 65%) were obtained by X-ray diffraction, scanning electron microscope, infrared spectroscopy and HP8510 network analyzer. The results indicated that the phase structure of composite powders was the mixtures of nickel ferrite, quartz, and mullite. The peak intensity for nickel ferrite decreased rapidly and for mullite increased remarkably with the increasing amount of microspheres. A pure spinel structure of NiFe2O4 formed on the glass microspheres at 600 oC. A uniform and continuous NiFe2O4-coating was obtained when the content of microspheres was 40%. A great amount of NiFe2O4 particle size is less than 80 nm. The composite with a content of 40% microspheres exhibits better dielectric and magnetic loss properties which are useful to absorb more electromagnetic wave. It can be a kind of good and light electromagnetic wave absorbing material in the X-band."  相似文献   

4.
In this work, we investigated the methanol steam reforming (MSR) reaction (CH\begin{document}$_3$\end{document}OH+H\begin{document}$_2$\end{document}O \begin{document}$\rightarrow$\end{document}CO\begin{document}$_2$\end{document}+3H\begin{document}$_2$\end{document}) catalyzed by \begin{document}$\alpha$\end{document}-MoC by means of density functional theory calculations. The adsorption behavior of the relevant intermediates and the kinetics of the elementary steps in the MSR reaction are systematically investigated. The results show that, on the \begin{document}$\alpha$\end{document}-MoC(100) surface, the O\begin{document}$-$\end{document}H bond cleavage of CH\begin{document}$_3$\end{document}OH leads to CH\begin{document}$_3$\end{document}O, which subsequently dehydrogenates to CH\begin{document}$_2$\end{document}O. Then, the formation of CH\begin{document}$_2$\end{document}OOH between CH\begin{document}$_2$\end{document}O and OH is favored over the decomposition to CHO and H. The sequential dehydrogenation of CH\begin{document}$_2$\end{document}OOH results in a high selectivity for CO\begin{document}$_2$\end{document}. In contrast, the over-strong adsorption of the CH\begin{document}$_2$\end{document}O intermediate on the \begin{document}$\alpha$\end{document}-MoC(111) surface leads to its dehydrogenation to CO product. In addition, we found that OH species, which is produced from the facile water activation, help the O\begin{document}$-$\end{document}H bond breaking of intermediates by lowering the reaction energy barrier. This work not only reveals the catalytic role played by \begin{document}$\alpha$\end{document}-MoC(100) in the MSR reaction, but also provides theoretical guidance for the design of \begin{document}$\alpha$\end{document}-MoC-based catalysts.  相似文献   

5.
Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H\begin{document}$_2$\end{document}O and CH\begin{document}$_2$\end{document} (singlet and triplet states) at equilibrium and non-equilibrium geometries. The potential energy curves of H\begin{document}$_2$\end{document}O, CH\begin{document}$_2$\end{document} (singlet and triplet states) and N\begin{document}$_2$\end{document} have also been calculated with IMRCI as well as the M?ller Plesset perturbation theory (MP2, MP3, and MP4), the coupled cluster method with single and double substitutions (CCSD), and CCSD with perturbative triples correction (CCSD(T)). These calculations demonstrate that IMRCI results are independent of the initial guess of configuration functions in the reference space and converge quickly to the results of the full configuration interaction. The IMRCI errors relative to the full configuration interaction results are at the order of magnitude of 10\begin{document}$^{-5}$\end{document} hartree within just 2-4 iterations. Further, IMRCI provides an efficient way to find on the potential energy surface the leading electron configurations which, as correct reference states, will be very helpful for the single-reference and multireference theoretical models to obtain accurate results.  相似文献   

6.
Reduced graphene oxide is the precursor to produce graphene in a large scale; however, to date, there has been no consensus on the electronic structure of reduced graphene oxide. In this study, we carried out an \begin{document}$ ab $\end{document} \begin{document}$ initio $\end{document} molecular dynamics simulation to investigate the adsorption process of hydroxyl groups on graphene surface. During the adsorption process, the OH group needs to firstly pass through a physical adsorption complex with the OH above the bridge site of two carbon atoms, next to surmount a transition state, then to be adsorbed at the atop site of a carbon atom. With a 5\begin{document}$ \times $\end{document}5 graphene surface, up to 6 hydroxyl groups can be adsorbed on the graphene surface, indicating the concentration coverage of the hydroxyl groups on graphene surface is about 12%. The simulation results show that the negative adsorption energy increases linearly as the number of adsorbed hydroxyl groups increases, and the band gap also increases linearly with the number of adsorbed hydroxyl groups.  相似文献   

7.
The commonly used oxide-supported metal catalysts are usually prepared in aqueous phase, which then often need to undergo calcination before usage. Therefore, the surface hydration and dehydration of oxide supports are critical for the realistic modeling of supported metal catalysts. In this work, by ab initio molecular dynamics (AIMD) simulations, the initial anhydrous monoclinic ZrO\begin{document}$_2$\end{document}(111) surfaces are evaluated within explicit solvents in aqueous phase at mild temperatures. During the simulations, all the two-fold-coordinated O sites will soon be protonated to form the acidic hydroxyls (HO\begin{document}$_{\rm{L}}$\end{document}), remaining the basic hydroxyls (HO*) on Zr. The basic hydroxyls (HO*) can easily diffuse on surfaces via the active proton exchange with the undissociated adsorption water (H\begin{document}$_2$\end{document}O*). Within the temperatures ranging from 273 K to 373 K, in aqueous phase a certain representative equilibrium hydrated m-ZrO\begin{document}$_2$\end{document}(111) surface is obtained with the coverage (\begin{document}$\theta$\end{document}) of 0.75 on surface Zr atoms. Later, free energies on the stepwise surface water desorption are calculated by density functional theory to mimic the surface dehydration under the mild calcination temperatures lower than 800 K. By obtaining the phase diagrams of surface dehydration, the representative partially hydrated m-ZrO\begin{document}$_2$\end{document}(111) surfaces (0.25\begin{document}$\leq$\end{document}\begin{document}$\theta$\end{document} < 0.75) at various calcination temperatures are illustrated. These hydrated m-ZrO\begin{document}$_2$\end{document}(111) surfaces can be crucial and readily applied for more realistic modeling of ZrO\begin{document}$_2$\end{document} catalysts and ZrO\begin{document}$_2$\end{document}-supported metal catalysts.  相似文献   

8.
9.
A distributed feedback laser with a wavelength of 2.8 \begin{document}$ μ $\end{document}m was used to measure the species produced by water vapor glow discharge. Only the absorption spectra of OH radicals and transient H\begin{document}$ _2 $\end{document}O molecules were observed using concentration modulation (CM) spectroscopy. The intensities and orientations of the absorption peaks change with the demodulation phase, but the direction of one absorption peak of H\begin{document}$ _2 $\end{document}O is always opposite to the other peaks. The different spectral orientations of OH and H\begin{document}$ _2 $\end{document}O reflect the increase or the decrease of the number of particles in the energy levels. If more transient species can be detected in the discharge process, the dynamics of excitation, ionization, and decomposition of H\begin{document}$ _2 $\end{document}O can be better studied. This study shows that the demodulation phase relationship of CM spectrum can be used to study the population change of molecular energy levels.  相似文献   

10.
Laser flash photolysis was used to investigate the photoinduced reactions of excited triplet bioquinone molecule duroquinone (DQ) with tryptophan (Trp) and tyrosine (Tyr) in acetonitrile-water (MeCN-H\begin{document}$_2$\end{document}O) and ethylene glycol-water (EG-H\begin{document}$_2$\end{document}O) solutions. The reaction mechanisms were analyzed and the reaction rate constants were measured based on Stern-Volmer equation. The H-atom transfer reaction from Trp (Tyr) to \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} is dominant after the formation of \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} during the laser photolysis. For DQ and Trp in MeCN-H\begin{document}$_2$\end{document}O and EG-H\begin{document}$_2$\end{document}O solutions, \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} captures H-atom from Trp to generate duroquinone neutral radical DQH\begin{document}$^\bullet$\end{document}, carbon-centered tryptophan neutral radical Trp\begin{document}$^\bullet$\end{document}/NH and nitrogen-centered tryptophan neutral radical Trp/N\begin{document}$^\bullet$\end{document}. For DQ and Tyr in MeCN-H\begin{document}$_2$\end{document}O and EG-H\begin{document}$_2$\end{document}O solutions, \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} captures H-atom from Tyr to generate duroquinone neutral radical DQH\begin{document}$^\bullet$\end{document} and tyrosine neutral radical Tyr/O\begin{document}$^\bullet$\end{document}. The H-atom transfer reaction rate constant of \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} with Trp (Tyr) is on the level of 10\begin{document}$^9$\end{document} L\begin{document}$\cdot$\end{document}mol\begin{document}$^{-1}$\end{document}\begin{document}$\cdot$\end{document}s\begin{document}$^{-1}$\end{document}, nearly controlled by diffusion. The reaction rate constant of \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} with Trp (Tyr) in MeCN/H\begin{document}$_2$\end{document}O solution is larger than that in EG/H\begin{document}$_2$\end{document}O solution, which agrees with Stokes-Einstein relationship qualitatively.  相似文献   

11.
Herein we present a facile approach for the preparation of a novel hierarchically porous carbon, in which seaweeds serve as carbon source and KOH as activator. The fabricated KOH-activated seaweed carbon (K-SC) displays strong affinity towards tetracycline with maximum uptake quantity of 853.3 mg/g, significantly higher than other tetracycline adsorbents. The superior adsorption capacity ascribes to large specific surface area (2614 m\begin{document}$ ^2 $\end{document}/g) and hierarchically porous structure of K-SC, along with strong \begin{document}$ \pi $\end{document}-\begin{document}$ \pi $\end{document} interactions between tetracycline and K-SC. In addition, the as-prepared K-SC exhibits fast adsorption kinetics, capable of removing 99% of tetracycline in 30 min. Meanwhile, the exhausted K-SC can be regenerated for four cycling adsorption without an obvious degradation in capacities. More importantly, pH and ionic strengths barely affect the adsorption performance of K-SC, implying electrostatic interactions hardly play any role in tetracycline adsorption process. Furthermore, the K-SC packed fixed-bed column (0.1 g of adsorbents) can continually treat 2780 mL solution spiked with 5.0 mg/g tetracycline before reaching the breakthrough point. All in all, the fabricated K-SC equips with high adsorption capacity, fast adsorption rate, glorious anti-interference capability and good reusability, which make it hold great feasibilities for treating tetracycline contamination in real applications.  相似文献   

12.
The geometric and electronic structures of several possible adsorption configurations of the pyrazine ({C\begin{document}$ _{4} $\end{document}}{H\begin{document}$ _{4} $\end{document}}{N\begin{document}$ _{2} $\end{document}}) molecule covalently attached to Si(100) surface, which is of vital importance in fabricating functional nano-devices, have been investigated using X-ray spectroscopies. The Carbon K-shell (1s) X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy of predicted adsorbed structures have been simulated by density functional theory with cluster model calculations. Both XPS and NEXAFS spectra demonstrate the structural dependence on different adsorption configurations. In contrast to the XPS spectra, it is found that the NEXAFS spectra exhibiting conspicuous dependence on the structures of all the studied pyrazine/Si(100) systems can be well utilized for structural identification. In addition, according to the classification of carbon atoms, the spectral components of carbon atoms in different chemical environments have been investigated in the NEXAFS spectra as well.  相似文献   

13.
The development of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light. In this work, the effect of high energy radiation (\begin{document}$\gamma$\end{document}-ray) on the structure and the photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was first studied. No morphological change of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was observed by SEM under \begin{document}$\gamma$\end{document}-ray radiation. However, the XRD spectra of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals showed the characteristic 2\begin{document}$\theta$\end{document} of (113) plane shifts slightly from 28.37\begin{document}$^{\rm{o}}$\end{document} to 28.45\begin{document}$^{\rm{o}}$\end{document} with the increase of the absorbed dose, confirming the change in the crystal structure of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}. The XPS results proved the crystal structure change was originated from the generation of oxygen vacancy defects under high-dose radiation. The photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} on the decomposition of methylene blue (MB) in water under visible light increases gradually with the increase of absorbed dose. Moreover, the improved photocatalytic performance of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals remained after three cycles of photocatalysis, indicating a good stability of the created oxygen vacancy defects. This work gives a new simple way to improve photocatalytic performance of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} through creating oxygen vacancy defects in the crystal structure by \begin{document}$\gamma$\end{document}-ray radiation.  相似文献   

14.
Hydrogen evolution reaction (HER) is the major cathodic reaction which competes \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction reaction (\begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} RR) on Pt electrode. Molecular level understanding on how these two reactions interact with each other and what the key factors are of \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} RR kinetics and selectivity will be of great help in optimizing electrolysers for \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction. In this work, we report our results of hydrogen evolution and \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction on Pt(111) and Pt film electrodes in \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} saturated acid solution by cyclic voltammetry and infrared spectroscopy. In solution with pH > 2, the major process is HER and the interfacial pH increases abruptly during HER; \begin{document}${\rm C}\rm{O}_\rm{ad}$\end{document} is the only adsorbed intermediate detected in \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction by infrared spectroscopy; the rate for \begin{document}${\rm C}\rm{O}_\rm{ad}$\end{document} formation increases with the coverage of UPD-H and reaches maximum at the onset potential for HER; the decrease of \begin{document}${\rm C}\rm{O}_\rm{ad}$\end{document} formation under HER is attributed to the available limited sites and the limited residence time for the reduction intermediate (\begin{document}$\rm{H}_\rm{ad}$\end{document}), which is necessary for \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} adsorption and reduction.  相似文献   

15.
Electrospinning has been used to obtain poly(methyl methacrylate) (PMMA) microfibers and nanofibers and PMMA/vapor grown carbon nanofibers (VGCNFs or CNFs) composite fibers with micrometer and nanometer size diameters. Thermogravimetric analysis (TGA) indicated that addition of CNFs caused a decrease in the thermal stability of the composite fibers. Scanning electron microscopy (SEM) was used to confirm the micro‐ and nano‐ nature of the fibers and transmission electron microscopy (TEM) was utilized to confirm the presence of CNFs embedded within the polymer matrix and along the surface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Cell membrane fusion is a fundamental biological process involved in a number of cellular living functions. Regarding this, divalent cations can induce fusion of the lipid bilayers through binding and bridging of divalent cations to the charged lipids, thus leading to the cell membrane fusion. However, the elaborate mechanism of cell membrane fusion induced by divalent cations is still needed to be elucidated. Here, surface/interface sensitive sum frequency generation vibrational spectroscopy (SFG-VS) and dynamic light scattering (DLS) were applied in this research to study the responses of phospholipid monolayer to the exposure of divalent metal ions i.e. Ca\begin{document}$ ^{2+} $\end{document} and Mg\begin{document}$ ^{2+} $\end{document}. According to the particle size distribution results measured by DLS experiments, it was found that Ca\begin{document}$ ^{2+} $\end{document} could induce inter-vesicular fusion while Mg\begin{document}$ ^{2+} $\end{document} could not. An octadecyltrichlorosilane self-assembled monolayer (OTS SAM)-lipid monolayer system was designed to model the cell membrane for the SFG-VS experiment. Ca\begin{document}$ ^{2+} $\end{document} could interact with the lipid PO\begin{document}$ _2 $\end{document}\begin{document}$ ^- $\end{document} head groups more strongly, resulting in cell membrane fusion more easily, in comparison with Mg\begin{document}$ ^{2+} $\end{document}. No specific interaction between the two metal cations and the C=O groups was observed. However, the C=O orientations changed more after Ca\begin{document}$ ^{2+} $\end{document}-PO\begin{document}$ _2 $\end{document}\begin{document}$ ^- $\end{document} binding than Mg\begin{document}$ ^{2+} $\end{document} mediation on lipid monolayer. Meanwhile, Ca\begin{document}$ ^{2+} $\end{document} could induce dehydration of the lipids (which should be related to the strong Ca\begin{document}$ ^{2+} $\end{document}-PO\begin{document}$ _2 $\end{document}\begin{document}$ ^- $\end{document} interaction), leading to the reduced hindrance for cell membrane fusion.  相似文献   

17.
The quality of perovskite layers has a great impact on the performance of perovskite solar cells (PSCs). However, defects and related trap sites are generated inevitably in the solution-processed polycrystalline perovskite films. It is meaningful to reduce and passivate the defect states by incorporating additive into the perovskite layer to improve perovskite crystallization. Here an environmental friendly 2D nanomaterial protonated graphitic carbon nitride (p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document}) was successfully synthesized and doped into perovskite layer of carbon-based PSCs. The addition of p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} into perovskite precursor solution not only adjusts nucleation and growth rate of methylammonium lead tri-iodide (MAPbI\begin{document}$_3$\end{document}) crystal for obtaining flat perovskite surface with larger grain size, but also reduces intrinsic defects of perovskite layer. It is found that the p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} locates at the perovskite core, and the active groups -NH\begin{document}$_2$\end{document}/NH\begin{document}$_3$\end{document} and NH have a hydrogen bond strengthening, which effectively passivates electron traps and enhances the crystal quality of perovskite. As a result, a higher power conversion efficiency of 6.61% is achieved, compared with that doped with g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} (5.93%) and undoped one (4.48%). This work demonstrates a simple method to modify the perovskite film by doping new modified additives and develops a low-cost preparation for carbon-based PSCs.  相似文献   

18.
"catalysts were synthesized by hydrothermal method. The X-ray diffraction result showed that the averageparticle size was in the range of 11-12 nm, which was correspondence to the high-resolution transmission electron microscopy result that the average particle size was about 12 nm. The specific surface area of the NiO-CeO2 binary compounds was in the range of 54-75 m2/g. Also the average particle size of the Bi2O3-CeO2 binary compounds was in the range of 8-11 nm. The oxygen storage capacity of the NiO-CeO2 and Bi2O3-CeO2 binary compounds was investigated under reduction and oxidation conditions. When the Ni and Bi concentration in CeO2 was up to 30%, the OSC values reached 2465 and 2560 1molO/g separately, which indicated that NiO and Bi2O3 compounded CeO2 materials have fine catalysis activity than other cations doped CeO2-based materials and appear to be very promising for practical applications such as OSC materials"  相似文献   

19.
The hydrogen abstraction reaction of methanol with fluorine atoms can produce HF and CH\begin{document}$ _3 $\end{document}O or CH\begin{document}$ _2 $\end{document}OH radicals, which are important in the environment, combustion, radiation, and interstellar chemistry. In this work, the dynamics of this typical reaction is investigated by the quasi-classical trajectory method based on a recently developed globally accurate full-dimensional potential energy surface. Particularly, the vibrational state distributions of the polyatomic products CH\begin{document}$ _3 $\end{document}O and CH\begin{document}$ _2 $\end{document}OH are determined by using the normal mode analysis method. It is found that CH\begin{document}$ _3 $\end{document}O and CH\begin{document}$ _2 $\end{document}OH are dominantly populated in the ground state when the reactants are at the ground ro-vibrational state. The OH stretching mode, torsional mode, H\begin{document}$ _2 $\end{document}CO out-of-plane bending mode and their combination bands in the CH\begin{document}$ _2 $\end{document}OH product can be effectively excited once the OH stretching mode of the reactant CH\begin{document}$ _3 $\end{document}OH is excited to the first vibrationally excited state. Most of the available energy flows into the HF vibrational energy and the translational energy in both channels, while the radical products, CH\begin{document}$ _3 $\end{document}O or CH\begin{document}$ _2 $\end{document}OH, receive a small amount of energy, consistent with experiment, which is an indication of its spectator nature.  相似文献   

20.
We report full-dimensional and fully coupled quantum bound-state calculations of the \begin{document}$ J $\end{document} = 1 intra- and intermolecular rovibrational states of two isotopologues of the hydrogen chloride-water dimer, HCl-H\begin{document}$ _2 $\end{document}O (HH) and DCl-H\begin{document}$ _2 $\end{document}O (DH). The present study complements our recent theoretical investigations of the \begin{document}$ J $\end{document} = 0 nine-dimensional (9D) vibrational level structure of these and two other H/D isotopologues of this noncovalently bound molecular complex, and employs the same accurate 9D permutation invariant polynomial-neural network potential energy surface. The calculations yield all intramolecular vibrational fundamentals of the HH and DH dimers and the low-energy intermolecular rovibrational states in these intramolecular vibrational manifolds. The results are compared with those of the 9D \begin{document}$ J $\end{document} = 0 calculations of the same dimers. The energy differences between the \begin{document}$ K $\end{document} = 1 and \begin{document}$ K $\end{document} = 0 eigenstates exhibit pronounced variations with the intermolecular rovibrational states, for which a qualitative explanation is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号