首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differential geometry of an imbedded (e.g. string or membrane world sheet) surface in a higher-dimensional background is shown to be conveniently describable (except in the null limit case) in terms of what are designated as its first, second, and third fundamental tensors, which will have the respective symmetry properties ημν = η(μν) as a trivial algebraic identity, Kμνρ = K(μν)ρ as the “generalised Weingarten identity”, which is the (Frobenius type) integrability condition for the imbedding, and Ξλμνρ = Ξ(λμν)ρ as a “generalised Codazzi equation”, which depends on the background geometry being flat or of constant curvature, needing replacement by a more complicated expression for a generic value of the background curvature Bκλμν. The “generalised Gauss equation” expressing the dependence on this background curvature of the internal curvature tensor Rκλμν of the imbedded surface is converted into terms of the first and second fundamental tensors, and it is thereby demonstrated that the vanishing of the (conformally invariant) “conformation tensor”, i.e. the trace free part Cμνρ of the second fundamental tensor Kμvρ, is a sufficient condition for conformal flatness of the imbedded surface (and thus in particular for the vanishing of its (Weyl type) conformal curvature tensor Cκλμν) provided the background is itself conformally flat. In a trio of which the first two members are the generalised Gauss and Codazzi equations, the “third” member is shown to give an expression in terms of Cμνρ for the (trace free, conformally invariant) “outer curvature” tensor Ωκλμν whose vanishing is the condition for feasibility of the natural generalisation of the Walker frame transportation ansatz. The vanishing of Cμνρ is shown to be sufficient in a conformally flat background for the vanishing also of Ωκλμν.  相似文献   

2.
The paper studies nonlinear hydrodynamic fluctuations by the methods of nonequilibrium statistical mechanics. The generalized Fokker-Planck equation for the distribution function of coarse-grained densities of conserved quantities is derived from the Liouville equation and then is investigated by using the gradient expansions in the flux correlation matrix. We have obtained the functional-differential Fokker-Planck equation describing the nonlinear hydrodynamic fluctuations in spatially nonuniform systems to second order in gradients of coarse-grained fluctuating fields. An outline of the derivation of Fokker-Planck equations containing the Burnett terms is also given. The explicit coordinate representation for the hydrodynamic Fokker-Planck equation is discussed in the case of one-component simple fluid. The general scheme of a change of coarse-grained functional variables is developed for hydrodynamic Fokker-Planck equations. The corresponding transformation rules are found for “drift” terms, “diffusion coefficients” and thermodynamic forces. The dynamical equations and stationary conditions for averages of functions (functionals) of hydrodynamic fields are discussed by using the Fokker-Planck operators acting on such functions. The explicit form of these operators are found for various sets of fluctuating fields. As an application of the formalism the calculation of the stationary correlation functions is presented for a simple nonequilibrium steady state.  相似文献   

3.
In this note we study the global behavior of the piecewise linear area-preserving transformation x1 = 1 − y0 + |x0|, y1 = x0, of the plane. We show that there are infinitely many invariant polygons surrounding an elliptic fixed point. The regions between these invariant polygons serve as models for the “zones of instability” in the corresponding smooth case. For our model we show that some of these annular zones contain only finitely many elliptic islands. The map is hyperbolic on the complement of these islands and hence exhibits stochastic behavior in this region. Unstable periodic points are dense in this region.  相似文献   

4.
B. Broda   《Physics letters. [Part B]》1992,280(3-4):213-218
A higher-dimensional generalization of (topological) Chern-Simons theory based on the concept of non-homogeneous differential forms is analyzed. A topological matter multiplet in an arbitrary irrep of the Lie group playing the role of an observable measuring “non-abelian linking numbers” of higher-dimensional links is introduced. The theory as a multiple highly on-shell reducible gauge system is quantized in the framework of the Batalin-Vilkovisky antifield-antibracket formalism. The corresponding monodromy matrix is derived in an explicitly covariant path-integral manner  相似文献   

5.
Using the formalism of soft-collinear effective theory, a complete separation of short- and long-distance contributions to heavy-to-light transition form factors at large recoil is performed. The universal functions ζM(E) parameterizing the “soft overlap” contributions to the form factors are defined in terms of matrix elements in the effective theory. Endpoint configurations corresponding to kinematic situations where one of the valence partons in the external mesons carries very small momentum are accounted for in terms of operators involving soft-collinear messenger fields. They contribute at leading order in ΛQCD/E and spoil factorization. An analysis of operator mixing and renormalization-group evolution in the effective theory reveals that the intermediate scale is without significance to the soft functions ζM(E), and that the soft overlap contribution does not receive a significant perturbative (Sudakov) suppression.  相似文献   

6.
The similarity between the weak interactions of electron and muon is extended to the principle that all e and μ interactions in gauge models are invariant under e ↔ μ exchange. This necessitates the existence of two Higgs doublets φe and φμ, and an extended e ↔ μ permutation invariance. After symmetry-breaking, a multiplicatively conserved “permutation parity” π = ± 1 for all particles naturally emerges, with πμ = −πe = 1. The model forbids μ → eγ but predicts ee → μμ mediated by π = −1 Higgs bosons at 10−11 times the rate of typical weak cross sections.  相似文献   

7.
M. Arnould 《Nuclear Physics A》1967,100(3):657-672
In this work, we compare positon capture and photo-beta disintegration probabilities in several stellar conditions.

We show that the second process can be neglected with regard to the first one in strongly endothermic nuclear transitions, whereas photo-beta disintegration can be competitive with positon capture and even can have a greater likelihood than the latter process in weakly endothermic and exothermic transitions.

In the range of temperature we consider here (T ≈ 109 °K), it appears that the lifetime ratio τ(ph)/τ(ec+) against photo-beta disintegration and positon capture is the smallest for densities in the neighbourhood of 106 g/cm3.

Thus, we arrive at the conclusion that the photo-beta process can play a role in the synthesis of two “p” elements at least, 62144Sm and 80196Hg, for which the ratios τ(ph)/τ(ec+) are close to 10 and 20, respectively, in the most favourable stellar conditions.  相似文献   


8.
Methane activation catalyzed over Ag-exchanged ZSM-5 zeolites was investigated by using the density functional theory (DFT) with a cluster model. Two different pathways were taken into account in this work: the “alkyl” and the “carbenium” pathways. The activation barriers obtained are 34.09 and 66.63 kcal/mol for the “alkyl” and the “carbenium” pathway, respectively. The calculated results show that the activation barrier of the “alkyl” pathway is smaller than that of “carbenium” pathway. Consequently, the “alkyl” pathway is the preferential reaction pathway. A new mechanism of methane conversion in the presence of ethene was proposed. In the catalytic cycle, the initial step of methane activation proceeds with the “alkyl” pathway and the Ag+ cation acts as an acceptor of the methyl group, then ethene reacts with the Ag+CH3 group to form propene. In addition, it is found that the Ag+ cations play an important role in the methane activation, compared with the reaction of methane activation over H-ZSM-5.  相似文献   

9.
We study the effects of Lorentz non-invariance on the physical pion velocity at the critical temperature Tc in an effective theory of hidden local symmetry (HLS) with the “vector manifestation” fixed point. We match at a “matching scale” ΛM the axial-vector current correlator in the HLS with the one in the operator product expansion for QCD, and present the matching condition to determine the bare pion velocity. We find that the physical pion velocity, which is found to be one at T=Tc when starting from the Lorentz invariant bare HLS, remains close to one with the Lorentz non-invariance, vπ(Tc)=0.83–0.99. This result is quite similar to the pion velocity in dense matter.  相似文献   

10.
We introduce new special ellipsoidal confocal coordinates in n (n ≥ 3) and apply them to the geodesic problem on a triaxial ellipsoid in 3 as well as the billiard problem in its focal ellipse.

Using such appropriate coordinates we show that these different dynamical systems have the same common analytic first integral. This fact is not evident because there exists a geometrical spatial gap between the geodesic and billiard flows under consideration, and this separating gap just “veils” the resemblance of the two systems.

In short, a geodesic on the ellipsoid and a billiard trajectory inside its focal ellipse are in a “veiled assonance”—under the same initial data they will be tangent to the same confocal hyperboloid. But this assonance is rather incomplete: the dynamical systems in question differ by their intrinsic action angle-variables, thereby the different dynamics arise on the same phase space (i.e. the same phase curves in the same phase space bear quite different rotation numbers).

Some results of this work have been published before in Russian (Tabanov, 1993) and presented to the International Geometrical Colloquium (Moscow, May 10–14, 1993) and the International Symposium on Classical and Quantum Billiards (Ascona, Switzerland, July 25–30, 1994).  相似文献   


11.
G. Jü  ttner  M. Karowski 《Nuclear Physics B》1994,430(3):615-632
The slq(2) quantum-group-invariant Heisenberg model with open boundary conditions is investigated by means of the Bethe ansatz. As is well known, quantum groups for q equal to a root of unity possess a finite number of “good” representations with non-zero q-dimension and “bad” ones with vanishing q-dimension. Correspondingly, the state space of an invariant Heisenberg chain decomposes into “good” and “bad” states. A “good” state may be described by a path of only “good” representations. It is shown that the “good” states are given by all “good” Bethe ansatz solutions with roots restricted to the first periodicity strip, i.e. only positive-parity strings (in the language of Takahashi) are allowed. Applying Bethe's string-counting technique completeness of the “good” Bethe states is proven, i.e. the same number of states is found as the number of all restricted paths on the slq(2) Bratteli diagram. It is the first time that a “completeness” proof for an anisotropic quantum-invariant reduced Heisenberg model is performed.  相似文献   

12.
Nonequilibrium thermodynamics and the Onsager hypothesis are utilized to demonstrate that long-time correlation “tails”, decaying as t−3/2, should be expected in the velocity autocorrelation function of crystals. In the simplest situation, this behavior is due to the non-propagating (Rayleigh) mode. In the general case, it is argued that “diffusive” modes decaying in wavevector space as exp (−tK2), where is a constant, should lead to the same behavior.  相似文献   

13.
We extend the definition of the “flipped” loop-quantum-gravity vertex to the case of a finite Immirzi parameter γ. We cover both the Euclidean and Lorentzian cases. We show that the resulting dynamics is defined on a Hilbert space isomorphic to the one of loop quantum gravity, and that the area operator has the same discrete spectrum as in loop quantum gravity. This includes the correct dependence on γ, and, remarkably, holds in the Lorentzian case as well. The ad hoc flip of the symplectic structure that was required to derive the flipped vertex is not anymore required for finite γ. These results establish a bridge between canonical loop quantum gravity and the spinfoam formalism in four dimensions.  相似文献   

14.
We introduce a new parameterization of four-fermion operator matrix elements which does not involve quark masses and thus allows a reduction of systematic uncertainties. In order to simplify the matching between lattice and continuum renormalization schemes, we express our results in terms of renormalization group invariant B-parameters which are renormalization-scheme and scale independent. As an application of our proposal, matrix elements of ΔI=3/2 and SUSY ΔS=2 operators have been computed. The calculations have been performed using the tree-level improved Clover lattice action at two different values of the strong coupling constant (β=6/g2=6.0 and 6.2), in the quenched approximation. Renormalization constants and mixing coefficients of lattice operators have been obtained non-perturbatively. Using lowest order χPT, we also obtain ππ|O7|KNDRI=2=(0.11±0.02) GeV4 and ππ|O8|KNDRI=2=(0.51±0.05) GeV4 at μ=2 GeV.  相似文献   

15.
Anomalies are found in the near-band-edge luminescence properties of Δ2-light-hole indirect excitons in Si1−yCy-based tensilely strained quantum wells (QWs). The experimental spectra exhibit a clear signature of phonon-assisted transitions on the lower energy side of the “no-phonon” transition, which indicates the relevance of “virtual” indirect valleys and in-plane k-dispersion, as opposed to the theoretical prediction that the zone-centered Δ2 valleys take over the conduction band edge. Intervalley scattering between [0 0 1]-Δ2 valleys and in-plane Δ4 valleys is suggested as the underlying mechanism. On the other hand, the experimental evidence was found for “apparently enhanced” quantum-confined Stark red shifts for Si1−yCy-based QWs. However, quantitative estimates are in conflict with the experimental results and predict a blue shift due to exciton weakening which masks the Stark effect as in the case of Δ4-heavy hole excitons in Si1−xGex-based QWs.  相似文献   

16.
Pseudo-billiards     
A new class of Hamiltonian dynamical systems with two degrees of freedom and kinetic energy of the form T = c1|p1| + c2|p2| (called “pseudo-billiards”) is studied. For any kind of interaction, the canonical equations can always be integrated on sequential time intervals; i.e. in principle all the trajectories can be found explicitly.

Depending on the potential, a dynamical system of this class can either be completely integrable or behave just as a usual non-integrable Hamiltonian system with two degrees of freedom: in its phase space there exist invariant tori, stochastic layers, domains of global chaos, etc. Pseudo-billiard models of both the types are considered.

If a potential of a pseudo-billiard system has critical points (equilibria), then trajectories close to these points (“loops”) can exist; they can be treated as images of self-localized objects with finite duration. Such a model (with quartic potential) is also studied.  相似文献   


17.
B. Westwanski 《Physica A》1987,140(3):433-449
The thermodynamical and Green function many-body reduction theorems of Wick type are proved for the arbitrary mixtures of the fermion, boson and spin systems. “Many-body” means that the operators used are the products of the arbitrary number of one-body standard basis operators [of the fermion or (and) spin types] with different site (wave vector) indices, but having the same “time” (in the interaction representation). The method of proving is based on: 1) the first-order differential equation of Schwinger type for: 1a) -product of operators; 1b) its average value; 2) KMS boundary conditions for this average. It is shown that the fermion, boson and spin systems can be unified in the many-body formulation (bosonification of the fermion systems). It is impossible in the one-body approach. Both of the many-body versions of the Wick theorem have the recurrent feature: nth order moment diagrams for the free energy or Green functions can be expressed by the (n −1)th order ones. This property corresponds to the automatic realization of: (i) summations over Bose-Einstein or (and) Fermi-Dirac frequencies; (ii) elimination of Bose-Einstein or (and) Fermi-Dirac distributions. The procedures (i) and (ii), being the results of using the Green function one-body reduction theorem, have constituted the significant difficulty up to now in the treatment of quantum systems.  相似文献   

18.
A detailed comparison is made between the spin–orbit interactions in Λ hypernuclei and ordinary nuclei. We argue that there are three major contributions to the spin–orbit interaction: (1) a short-range component involving scalar and vector mean fields; (2) a “wrong-sign” spin–orbit term generated by the pion exchange tensor force in second order; and (3) a three-body term induced by two-pion exchange with excitation of virtual Δ(1232)-isobars (à la Fujita–Miyazawa). For nucleons in nuclei the long-range pieces related to the pion-exchange dynamics tend to cancel, leaving room dominantly for spin–orbit mechanisms of short-range origin (parametrized, e.g., in terms of relativistic scalar and vector mean fields terms). In contrast, the absence of an analogous 2π-exchange three-body contribution for Λ hyperons in hypernuclei leads to an almost complete cancellation between the short-range (relativistic mean-field) component and the “wrong-sign” spin–orbit interaction generated by second order π-exchange with an intermediate Σ hyperon. These different balancing mechanisms between short- and long-range components are able to explain simultaneously the very strong spin–orbit interaction in ordinary nuclei and the remarkably weak spin–orbit splitting in Λ hypernuclei.  相似文献   

19.
Based on earlier studies by Hopf (1941), Doering and Constantin (1992, 1994, 1995) have recently formulated a new “background” technique for obtaining upper bounds on turbulent fluid flow quantities. This method produces upper bounds on the limit supremum of long time averages, making no statistical assumptions about the flow in contrast to the well-known Howard-Busse approach. The full optimisation problems posed by this method for the momentum transport in turbulent Couette flow and the heat transport (with zero background flow) in turbulent Boussinesq convection are solved here for the first time at asymptotically large Reynolds number and Rayleigh number within Busse's multiple boundary layer approximation to extract the best (lowest) possible upper bounds available. Intriguingly, the original bounds isolated by Busse (1969, 1970) within the confines of statistical stationarity are recovered exactly using this new formalism. The optimal background velocity profile for turbulent Couette flow is found to be shearless in the interior thus differing from Busse's “ ” mean shear result. In the convective case, an interesting degeneracy in the formulation of the background variational problem leads to an indeterminacy in the optimal background temperature profile. Only for one special choice is the isothermal core feature of Busse's mean profile recovered.  相似文献   

20.
The anisotropy properties of samarium-Alnico V pseudobinary alloys have been investigated. With alloys containing less than 12.0 mol% samarium, the K1 values are negative at 77 K and increase with increasing temperature to approximately zero at room temperature. The K2 values remain positive at all temperatures. We do not find the easy cone that has long been thought to be existed in those alloys with K1 < 0 and K2 #62; 0. In alloys with samarium contents between 13.3 and 19.0 mol%, the K1 and K2 values are positive at all temperatures. The anisotropy fields are not changed monotonically in the whole range of 10.1 to 19.0 mol% of samarium. It is concluded that the alloys are characteristics in thermodynamically of first-order transition. We have found that the “hard cone” exists in each of those alloys with samarium content more than 16.0 mol% and at temperatures above 77 K. The alloys with samarium less that 13.4 mol% also have “hard cone” under 77 K. However, the observed “hard cone” is different from the well known one in the first-order magnetization process, and it will collapse to the easy axis when the measuring field and temperature increase while under room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号