首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of cobalt vanadophosphate dihydrate {systematic name: poly[diaqua‐μ‐oxido‐μ‐phosphato‐hemicobalt(II)vanadium(II)]}, Co0.50VOPO4·2H2O, shows a three‐dimensional framework assembled from VO5 square pyramids, PO4 tetrahedra and Co[O2(H2O)4] octahedra. The CoII ions have local 4/m symmetry, with the equatorial water molecules in the mirror plane, while the V and apical O atom of the vanadyl group are located on the fourfold rotation axis and the P atoms reside on sites. The PO4 tetrahedra connect the VO5 polyhedra to form a planar P–V–O layer. The [Co(H2O)4]2+ cations link adjacent P–V–O layers via vanadyl O atoms to generate an unprecedented three‐dimensional open framework. Powder diffraction measurements reveal that the framework collapses on removal of the water molecules.  相似文献   

2.
The new layered title compound, barium di‐μ‐hydroxido‐di‐μ‐vanadato‐tricobaltate(II), was prepared under low‐temperature hydrothermal conditions. Its crystal structure comprises Co2+ and O2− ions in the Kagomé geometry. The octahedral Co3O6(OH)2 Kagomé layers, made up of edge‐shared CoO4(OH)2 octahedra with Co on a site of 2/m symmetry, alternate along the c axis with barium vanadate heteropolyhedral layers, in which Ba is on a site of m symmetry and V is on a site of 3m symmetry. All three O atoms and the H atom also occupy special positions: two O atoms and the H atom are on sites with 3m symmetry and one O atom is on a site with m symmetry. Ba[Co3(VO4)2(OH)2] represents the first compound from the four‐component BaO–CoO–V2O5–H2O system and its structure is topologically related to the minerals vesignieite, Ba[Cu3(VO4)2(OH)2], and bayldonite, Pb[Cu3(AsO4)2(OH)2].  相似文献   

3.
In poly[[diaquaoxido[μ3‐trioxidoselenato(2−)]vanadium(IV)] hemihydrate], {[VO(SeO3)(H2O)2]·0.5H2O}n, the octahedral V(H2O)2O4 and pyramidal SeO3 building units are linked by V—O—Se bonds to generate ladder‐like chains propagating along the [010] direction. A network of O—H...O hydrogen bonds helps to consolidate the structure. The O atom of the uncoordinated water molecule lies on a crystallographic twofold axis. The title compound has a similar structure to those of the reported phases [VO(OH)(H2O)(SeO3)]4·2H2O and VO(H2O)2(HPO4)·2H2O.  相似文献   

4.
In the title compound, disodium cobalt tetrakis­(dihydrogen­phosphate) tetrahydrate, the CoII ion lies on an inversion centre and is octahedrally surrounded by two water molecules and four H2PO4 groups to give a cobalt complex anion of the form [Co(H2PO4)4(OH2)]2?. The three‐dimensional framework results from hydrogen bonding between the anions. The relationship with the structures of Co(H2PO4)2·2H2O and K2CoP4O12·5H2O is discussed.  相似文献   

5.
The novel zincophosphates UH‐6 (sum formula |[Co(diAMHsar)]| [Zn2(HPO4)3(PO4)] · H2O) and UH‐10 (sum formula |([Co(diAMHsar)])2| [{Zn2(HPO4)3(PO4)}2] · H2O) were synthesized in hydrothermal syntheses employing the chiral sarcophagine complex [Co(diAMHsar)]5+ as the structure‐directing agent. The inorganic part of UH‐6 consists of pearl‐like chains of alternating [ZnO4] and [PO4] tetrahedra, which are connected to the incorporated cobalt complex via numerous hydrogen bonds. UH‐10 was synthesized under similar conditions, but at higher reaction temperatures. In consequence, the crystal structures of UH‐6 and UH‐10 are closely related, although systematic disorder in UH‐10 and the lower symmetry result in a unit cell twice as large as the corresponding unit cell of UH‐6. Interestingly, in both zincophosphates only one enantiomer of the cobalt complex is present, despite the fact that a racemic mixture of the complex salt is used for synthesis. Thermogravimetric analysis and powder X‐ray diffraction of a thermally treated sample of UH‐6 reveals a phase transformation at ca. 300 °C.  相似文献   

6.
In dirubidium copper bis[vanadyl(V)] bis(phosphate), Rb2Cu(VO2)2(PO4)2, three different oxo complexes form an anionic framework. VO5 polyhedra in a trigonal bipyramidal configuration and PO4 tetrahedra share vertices to form eight‐membered rings, which lie in layers perpendicular to the a axis of the monoclinic unit cell. Cu atoms at centres of symmetry have square‐planar coordination and link these layers along [100] to form a three‐dimensional anionic framework, viz. [Cu(VO2)2(PO4)2]2−. Intersecting channels in the [100], [001] and [011] directions contain Rb+ cations. Topological relations between this new structure type and the crystal structures of A(VO2)(PO4) (A = Ba, Sr or Pb) and BaCrF2LiF4 are discussed.  相似文献   

7.
IntroductionSincethepioneerworksofClearfieldandcoworkersinthe 196 0s ,1,2 layeredmetalphosphateshaveattractedmuchattentionduetotheirapplicationsonionex change ,intercalation ,heterogeneouscatalysisandsorp tion .3 7Amongthenumerouslamellarphases ,theproto typical…  相似文献   

8.
Abstract

The calcium vanadyl tartrate complex [Ca(VO)(d,l-C4H2O6)(H2O)4] has been synthesized and characterized by spectroscopic methods. Its crystal structure was solved by X-ray methods. The compound is monoclinic, space group P21/c, with a = 8.0282(5), b = 17.1568(8), c = 7.6113(3)Å, β = 94.269(4)° and Z = 4. The structure consists of centrosymmetric vanadyl tartrate dimers, [(VO)(d,l-C4H2O6)]2 4-, and calcium cations placed between them. As a result, dimers form chains in the [101] direction. Neighbouring chains are linked by the coordination of the calcium ion to the oxygen atom of a vanadyl group of a different chain, thus forming a two-dimensional structure. Different layers are linked by hydrogen bonds. Spectroscopic studies show the existence of intra-dimeric interactions between vanadium atoms.  相似文献   

9.
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu4N+)2[MIVO(Pc4?)]2? (M=Ti, V) and (Bu3MeP+)2[MIVO(Pc4?)]2? (M=Ti, V) with [MIVO(Pc4?)]2? dianions were synthesized and characterized. Reduction of MIVO(Pc2?) carried out with an excess of sodium fluorenone ketyl in the presence of Bu4N+ or Bu3MeP+ is exclusive to the phthalocyanine centers, forming Pc4? species. During reduction, the metal +4 charge did not change, implying that Pc is an non‐innocent ligand. The Pc negative charge increase caused the C?N(pyr) bonds to elongate and the C?N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn–Teller effects are significant in the [eg(π*)]2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q‐bands were observed in the UV/Vis/NIR when MIVO(Pc2?) was reduced to [MIVO(Pc . 3?)] . ? and [MIVO(Pc4?)]2?. From magnetic measurements, [TiIVO(Pc4?)]2? was found to be diamagnetic and (Bu4N+)2[VIVO(Pc4?)]2? and (Bu3MeP+)2[VIVO(Pc4?)]2? were found to have magnetic moments of 1.72–1.78 μB corresponding to an S=1/2 spin state owing to VIV electron spin. As a result, two latter salts show EPR signals with VIV hyperfine coupling.  相似文献   

10.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

11.
Crystals of Ba Na ethylenediaminetetraacetatocobaltate(III) perchlorate, NaBa2[Co(Edta)]2(ClO4)3 · 9H2O, contain two crystallographically nonequivalent Ba2+ cations and two complex cations [Co(Edta)]? (Edta4? is ethylenediaminetetraacetic acid anion), the latter anions showing opposite chirality. The nearest surrounding of the Ba2+ ions involves three water molecules (including two bridging water molecules), six O atoms of four complexes [Co(Edta)]? and the perchlorate O atom. Tetrameric fragments Ba2(H2O)4[Co(Edta)]2(ClO4)2 are united through the Ba-O bonds into layers with the Ba atoms in the middle of the layers and the perchlorate ions and complex anions at the periphery; in the latter anions, noncoordinated O atom of one of the R-metallocycles is directed outside. The Na atom of the Na(H2O)(ClO4) group located between the layers is bonded to these O atoms of the neighboring layers.  相似文献   

12.
The crystal structure of the ambient‐pressure phase of vanadyl pyrophosphate, (VO)2P2O7, has been precisely determined at 120 K from synchrotron X‐ray diffraction data measured on a high‐quality single crystal. The structure refinement unambiguously establishes the orthorhombic space group Pca21 as the true crystallographic symmetry. Moreover, it improves the accuracy of previously published atomic coordinates by one order of magnitude, and provides reliable anisotropic displacement parameters for all atoms. Along the a axis, the structure consists of infinite two‐leg ladders of vanadyl cations, (VO)2+, which are separated by pyrophosphate anions, (P2O7)4?. Parallel to the c axis, the unit cell comprises two alternating crystallographically inequivalent chains of edge‐sharing VO5 square pyramids bridged by PO4 double tetrahedra. No structural phase transition has been observed in the temperature range between 300 and 120 K.  相似文献   

13.
The structure of the title compound, ammineaquadi‐μ5‐phosphato‐trizinc(II), [Zn3(PO4)2(H2O)0.8(NH3)1.2], consists of two parts: (i) PO4 and ZnO4 vertex‐sharing tetrahedra arranged in layers parallel to (100) and (ii) ZnO2(N/O)2 tetrahedra located between the layers. Elemental analysis establishes the ammine‐to‐water ratio as 3:2. ZnO2(N/O)2 tetrahedra are located at special position 4e (site symmetry 2) in C2/c. The two O atoms of ZnO2(N/O)2 are bonded to neighbouring P atoms, forming two Zn—O—P linkages and connecting ZnO2(N/O)2 tetrahedra with two adjacent bc plane layers. A noteworthy feature of the structure is the presence of NH3 and H2O at the same crystallographic position and, consequently, qualitative changes in the pattern of hydrogen bonding and weaker N/O—H...O electrostatic interactions, as compared to two closely related structures.  相似文献   

14.
NH4[PO2F(NH2)] has been prepared by the reaction of a betaine py·PO2F with excess ammonia in acetonitrile solution, while the ammonolysis of DMAP·PO2F with a stoichiometric amount of NH3 yields [DMAPH][PO2F(NH2)]. The crystal structure of the latter was determined by single‐crystal X‐ray diffraction, which revealed that the anions [PO2F(NH2)] are linked to infinite chains by double N—H···O bridges. Additional strong N—H···O bridging bonds connect each anion with its [DMAPH]+ counterion. The formation of a new betaine NH3·PO2F in the solution of py·PO2F in liquid ammonia was proved by 31P NMR spectroscopy and by identification of its hydrolysis products.  相似文献   

15.
The three new thioantimonates(V) [Ni(chxn)3]3(SbS4)2·4H2O ( I ), [Co(chxn)3]3(SbS4)2·4H2O ( II ) (chxn is trans‐1,2‐diaminocyclohexane) and [Co(dien)2][Co(tren)SbS4]2·4H2O ( III ) (dien is diethylenetriamine and tren is tris(2‐aminoethyl)amine) were synthesized under solvothermal conditions. Compounds I and II are isostructural crystallizing in space group C2/c. The structures are composed of isolated [M(chxn)3]2+ complexes (M = Ni, Co), [SbS4]3? anions and crystal water molecules. Short S···N/S···O/O···O separations indicate hydrogen bonding interactions between the different constituents. Compound III crystallizes in space group and is composed of [Co(dien)2]2+ and [Co(tren)SbS4]? anions and crystal water molecules. In the cationic complex the Co2+ ion is in an octahedral environment of two dien ligands whereas in [Co(tren)SbS4]? the Co2+ ion is in a trigonal bipyramidal coordination of four N atoms of tren and one S atom of the [SbS4]3? anion, i.e., two different coordination polyhedra around Co2+ coexist in this compound. Like in the former compounds an extended hydrogen bonding network connects the complexes and the water molecules into a three‐dimensional network.  相似文献   

16.
Crystal Structures of the Phosphoraneiminato Complex [INi(NPMe3)]4 · C4H8O · C7H8 and of the Phosphanimine Complex [INi{Me2Si(NPMe3)2}(HNPMe3)]+I The phosphoraneiminato complex [INi(NPMe3)]4 was obtained by reaction of NiI2 in molten Me3SiNPMe3 in the presence of potassium fluoride at 200 °C. Dark‐green single crystals of [INi(NPMe3)]4 · C4H8O · C7H8 were formed from THF‐toluene solution. According to the X‐ray crystal structure determination the complex has a Ni4N4 heterocubane core and its symmetry deviates only marginally from Td (space group Pca21, Z = 4, a = 3160.7(6), b = 1001.5(1), c = 1422.6(8) pm). The [INi(NPMe3)]4 molecules are stacked to columns parallel to b, with a nearly tetragonal pattern in projection on (010). The solvent molecules reside in channels between the columns. A side product of the synthesis were blue single crystals of the phosphanimine complex [INi{Me2Si(NPMe3)2}(HNPMe3)]+I. The crystal structure determination (space group Pca21, Z = 4, a = 1213.3(4), b = 1582.7(6), c = 1339.7(4) pm) revealed a distorted tetrahedral coordination of the Ni atom in the cation; the coordinated atoms are the two N atoms of the chelating bis(phosphane)imine molecule, the N atom of the phosphaneimine molecule HNPMe3 and one iodo ligand.  相似文献   

17.
The title compound, bis[di­aqua­bis­(ethyl­enedi­amine‐κ2N,N′)copper(II)­] hexa­cyano­iron(II) tetrahydrate, [Cu(C2H8N2)2(H2O)1.935]2[Fe(CN)6]·4H2O, was crystallized from an aqueous reaction mixture initially containing CuSO4, K3[Fe(CN)6] and ethyl­enedi­amine (en) in a 3:2:6 molar ratio. Its structure is ionic and is built up of two crystallographically different cations, viz. [Cu(en)2(H2O)2]2+ and [Cu(en)2(H2O)1.87]2+, there being a deficiency of aqua ligands in the latter, [Fe(CN)6]4− anions and disordered solvent water mol­ecules. All the metal atoms lie on centres of inversion. The Cu atom is octahedrally coordinated by two chelate‐bonded en mol­ecules [mean Cu—N = 2.016 (2) Å] in the equatorial plane, and by axial aqua ligands, showing very long distances due to the Jahn–Teller effect [mean Cu—O = 2.611 (2) Å]. In one of the cations, significant underoccupation of the O‐atom site is observed, correlated with the appearance of a non‐coordinated water mol­ecule. This is interpreted as the partial contribution of a hydrate isomer. The [Fe(CN)6]4− anions form quite regular octahedra, with a mean Fe—C distance of 1.913 (2) Å. The dominant intermolecular interactions are cation–anion O—H⋯N hydrogen bonds and these inter­actions form layers parallel to (001).  相似文献   

18.
The title compound, tetrakis­(ethyl­enedi­ammonium) tetra‐μ‐hydrogenphosphato‐di‐μ‐hydro­xo‐ tetra‐μ‐phosphato‐bis­(aqua­cobalt)­hexakis­(oxovanadium) trihydrate, was synthesized hydro­thermally at moderate temperature. The structure consists of diprotonated ethyl­enedi­ammonium cations and layers of the polyanions. The polyanion contains four PO4 tetrahedra and three VO5 square pyramids that are linked through corner‐sharing by alternating P—O—V, which gives rise to a chain. The chains, connected by CoO4(H2O)2 octahedra, form layers, resulting in a two‐dimensional layered structure. The Co—O distances are in the range 1.984 (3)–2.038 (4) Å, the P—O distances 1.508 (3)–1.575 (3) Å and the V—O distances 1.585 (3)–2.010 (3) Å.  相似文献   

19.
The crystal structure of the title compound, [CoCl‐(C16H26N6)]ClO4, consists of discrete [CoCl­(C16­H26N6)]+ cations and perchlorate anions. The five‐coordinate CoII atom has four nitro­gen donors from the new mesocyclic ligand 1,5‐bis(1‐methyl‐1H‐­imidazol‐2‐ylmethyl)‐1,5‐di­aza­cyclo­octane [Co—N 2.046 (3)–2.214 (4) Å], and a chloride anion at the apical site [Co—Cl 2.3184 (13) Å]. The coordination geometry of the complex is essentially square pyramidal. The mesocyclic ligand takes a boat–chair configuration and the two imidazole pendants are not coplanar. The dihedral angle between the two imidazole planes is 15.97°. An H atom from the 1,5‐diaza­cyclo­octane group effectively blocks the axial coordination site opposite the Cl ligand.  相似文献   

20.
Synthesis and Crystal Structure of Te3O3(PO4)2, a Compound with 5‐fold Coordinate Tellurium(IV) Polycrystalline Te3O3(PO4)2 is formed during controlled dehydration of (Te2O3)(HPO4) with (Te8O10)(PO4)4 as an intermediate product. Colourless single crystals were prepared by heating stoichiometric amounts of the binary oxides P2O5 und TeO2 in closed silica glass ampoules at 590 °C for 8 hours. The crystal structure (P21/c, Z = 4, α = 12.375(2), b = 7.317(1), c = 9.834(1)Å, β = 98.04(1)°, 1939 structure factors, 146 parameters, R[F2 > 2σ(F2)] = 0.0187, wR2(F2 all) = 0.0367) was determined from four‐circle diffractometer data and consists of [TeO5] polyhedra und PO4 tetrahedra as the main building units. The framework structure is made up of cationic zigzag‐chains of composition [Te2O3]2+ which extend parallel to [001] and anionic [Te(PO4)2]2— units linked laterally to these chains. This leads to the formation of [Te2O3][Te(PO4)2] layers parallel to the bc plane which are interconnected via weak Te‐O bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号