首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Crystals of a second polymorph of violuric acid monohydrate [systematic name: pyrimidine‐2,4,5,6(1H,3H)‐tetrone monohydrate], C4H3N3O4·H2O, have higher density and a more extensive hydrogen‐bonding arrangement than the previously reported polymorph. Violuric acid and water molecules form essentially planar hydrogen‐bonded sheets, which are stacked in an offset …ABCABC… repeat pattern involving no ring‐stacking interactions.  相似文献   

2.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   

3.
Crystals of mixed alkali neodymium orthoborates, K9Li3Nd3(BO3)7 and A2LiNd(BO3)2 (A = Rb, Cs) were obtained by spontaneous crystallization. K9Li3Nd3(BO3)7 crystallizes in space group P2/c with cell parameters of a = 11.4524(7) Å, b = 10.1266(6) Å, c = 12.3116 (10) Å, β = 122.0090(10)°. In the structure, NdO8 polyhedra share corners and connect with planer BO3 groups to form infinite [Nd3B3O21]n chains. These chains are linked by additional BO3 groups to produce a double layer of [Nd6B6O38]n blocks in the ac plane with K and Li ions filled into the cavities. A2LiNd(BO3)2 (A = Rb, Cs) crystallizes in space group Pbcm, with cell parameters of a = 7.113(2) Å, b = 9.691(3) Å and c = 10.135(3) Å for Rb2LiNd(BO3)2, and a = 7.2113(3) Å, b = 9.9621(4) Å, and c = 10.3347(4) Å for Cs2LiNd(BO3)2. In the structure, NdO8 polyhedra are corner‐sharing with each other and further interlinked by BO3 groups to comprise the infinite [Nd4B4O24] sheets in the bc plane, with Rb/Cs and Li ions occupying the interlayered space. The compounds show effective near‐IR emission and their associated lifetimes are obtained by fluorescence spectra.  相似文献   

4.
Fluorine substitutions on the furanose ring of nucleosides are known to strongly influence the conformational properties of oligonucleotides. In order to assess the effect of fluorine on the conformation of 3′‐deoxy‐3′‐fluoro‐5‐methyluridine (RTF), C10H13FN2O5, we studied its stereochemistry in the crystalline state using X‐ray crystallography. The compound crystallizes in the chiral orthorhombic space group P212121 and contains two symmetry‐independent molecules (A and B) in the asymmetric unit. The furanose ring in molecules A and B adopts conformations between envelope (2E, 2′‐endo, P = 162°) and twisted (2T3, 2′‐endo and 3′exo, P = 180°), with pseudorotation phase angles (P) of 164.3 and 170.2°, respectively. The maximum puckering amplitudes, νmax, for molecules A and B are 38.8 and 36.1°, respectively. In contrast, for 5‐methyluridine (RTOH), the value of P is 21.2°, which is between the 3E (3′‐endo, P = 18.0°) and 3T4 (3′‐endo and 4′‐exo, P = 36°) conformations. The value of νmax for RTOH is 41.29°. Molecules A and B of RTF generate respective helical assemblies across the crystallographic 21‐screw axis through classical N—H…O aand O—H…O hydrogen bonds supplemented by C—H…O contacts. Adjacent parallel helices of both molecules are linked to each other via O—H…O and O…π interactions.  相似文献   

5.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

6.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

7.
The magnesium borate fluoride Mg5(BO3)3F was grown by spontaneous crystallization with molten flux based on the MgF2‐LiF‐Na2CO3‐H3BO3 solvent. Structure solution from single‐crystal X‐ray diffraction shows that the title compound crystallizes in the orthorhombic space group Pnma (No. 62) with cell dimensions of a = 10.068(5) Å, b = 14.858(7) Å, c = 4.540(2) Å and Z = 4. Its structure features a three‐dimensional (3D) Mg‐O‐F framework composed of MgO5F and MgO6 polyhedra and isolated BO3 groups. The detailed structure comparison referred to Mg5(BO3)3F, Mg3BO3F3 and β‐Mg2BO3F was carried out. The infrared spectrum (IR) and the bond valence sum (BVS) calculations of Mg5(BO3)3F verify the validity of the structure. The calculated band structure and the density of states of Mg5(BO3)3F suggest that its indirect bandgap is 5.27 eV. The compound was additionally investigated by UV/Vis‐NIR diffuse reflectance spectroscopy and thermal analysis.  相似文献   

8.
Synthetic hydro­cerussite [trilead dihydroxide dicarbonate, Pb3(CO3)2(OH)2] can be easily obtained, as a white powder, by the action of carbon dioxide and water on either lead or litharge at pH 4–5. This compound is also found in lead corrosion technological products as a fine‐grained phase. Abinitio crystal structure determination was carried out on X‐ray powder diffraction data. The heavy‐atom method and the Patterson function helped determine the crystallographic model and the atom locations. The Rietveld fitting procedure was used for the final refinement. The atomic arrangement is closely related to the structures of other lead hydro­xide carbonates. The hydro­cerussite structure can be viewed as a sequence of two types of layers stacked along [001]. Layer A is composed of Pb and CO3, and layer B is composed of Pb and OH. The stacking sequence is …BAABAA…  相似文献   

9.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

10.
The novel tetraphenylethylene derivative 4‐methyl‐N‐[3‐(1,2,2‐triphenylethenyl)phenyl]benzenesulfonamide (abbreviated as MTBF), C33H27NO2S, was synthesized successfully and characterized by single‐crystal X‐ray diffraction, high‐resolution mass spectroscopy and 1H NMR spectroscopy. MTBF crystallizes in the centrosymmetric monoclinic space group P21/c. In the crystal structure, the MTBF molecules are connected into a one‐dimensional band and then a two‐dimensional sheet by hydrogen bonds of the N—H…O and C—H…O types. The sheets are further linked to produce a three‐dimensional network via C—H…π interactions. The molecules aggregate via these intermolecular forces, which restrain the intramolecular motions (RIM) and decrease the energy loss in the aggregation state, so as to open the radiative channels, and thus MTBF exhibits excellent fluorescence by aggregation‐induced emission (AIE) enhancement.  相似文献   

11.
In this investigation, reaction channels of weakly bound complexes CO2…HF, CO2…HF…NH3, CO2…HF…H2O and CO2…HF…CH3OH systems were established at the B3LYP/6‐311++G(3df,2pd) level, using the Gaussian 98 program. The conformers of syn‐fluoroformic acid or syn‐fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH) were found to be more stable than the conformers of the related anti‐fluoroformic acid or anti‐fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH). However, the weakly bound complexes were found to be more stable than either the related syn‐ and anti‐type fluoroformic acid or the acid plus third molecule (NH3, H2O, or CH3OH) conformers. They decomposed into CO2 + HF, CO2 + NH4F, CO2 + H3OF or CO2 + (CH3)OH2F combined molecular systems. The weakly bound complexes have four reaction channels, each of which includes weakly bound complexes and related systems. Moreover, each reaction channel includes two transition state structures. The transition state between the weakly bound complex and anti‐fluoroformic acid type structure (T13) is significantly larger than that of internal rotation (T23) between the syn‐ and anti‐FCO2H (or FCO2H…NH3, FCO2H…H2O, or FCO2H…CH3OH) structures. However, adding the third molecule NH3, H2O, or CH3OH can significantly reduce the activation energy of T13. The catalytic strengths of the third molecules are predicted to follow the order H2O < NH3 < CH3OH. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
RbLi2Ga2(BO3)3     
The structure of rubidium dilithium digallium tris­(borate), RbLi2Ga2(BO3)3, contains two‐dimensional sheets of open‐branched rings of GaO4 tetrahedra and planar BO3 triangles that are joined by LiO4 tetrahedra to form a three‐dimensional framework. Ten‐coordinate Rb atoms lie on twofold axes and occupy channels within the framework that extend along the b axis.  相似文献   

13.
The title compound, {[Zn(C8H4O5)(C3H7NO)2]·0.5C7H8}n, is a one‐dimensional coordination polymer in which the Zn atoms are linked by bridging 5‐hydroxy­benzene‐1,3‐dicarboxyl­ate ligands. These polymeric chains form two‐dimensional sheets via interchain hydrogen bonds, and these sheets, in turn, are stacked tightly with solvent toluene mol­ecules in the inter­layer space. The N,N′‐dimethyl­formamide ligands, coordinated axially to the Zn atoms, form van der Waals contacts with ligands in neighboring sheets, and enclose the guest mol­ecules.  相似文献   

14.
Molecular H3BO3 is obtained by heating crystalline orthoboric acid in vacuo to ∼ 40 °C. The IR spectrum of this species isolated in low-temp.  相似文献   

15.
()‐Tartaric acid, C4H6O6, crystallized from ethanol in space group P. The structure is characterized by five hydrogen bonds, including the formation of a centrosymmetric carbox­ylic acid dimer which forms infinite chains along the body diagonal. These chains form sheets via hydrogen bonding between α‐hydroxyl groups. The sheets are connected through a bifurcated hydrogen bond. Structural comparisons are made with homochiral (2R,3R)‐(+)‐tartaric acid.  相似文献   

16.
We report a novel 1:1 cocrystal of β‐alanine with dl ‐tartaric acid, C3H7NO2·C4H6O6, (II), and three new molecular salts of dl ‐tartaric acid with β‐alanine {3‐azaniumylpropanoic acid–3‐azaniumylpropanoate dl ‐tartaric acid–dl ‐tartrate, [H(C3H7NO2)2]+·[H(C4H5O6)2], (III)}, γ‐aminobutyric acid [3‐carboxypropanaminium dl ‐tartrate, C4H10NO2+·C4H5O6, (IV)] and dl ‐α‐aminobutyric acid {dl ‐2‐azaniumylbutanoic acid–dl ‐2‐azaniumylbutanoate dl ‐tartaric acid–dl ‐tartrate, [H(C4H9NO2)2]+·[H(C4H5O6)2], (V)}. The crystal structures of binary crystals of dl ‐tartaric acid with glycine, (I), β‐alanine, (II) and (III), GABA, (IV), and dl ‐AABA, (V), have similar molecular packing and crystallographic motifs. The shortest amino acid (i.e. glycine) forms a cocrystal, (I), with dl ‐tartaric acid, whereas the larger amino acids form molecular salts, viz. (IV) and (V). β‐Alanine is the only amino acid capable of forming both a cocrystal [i.e. (II)] and a molecular salt [i.e. (III)] with dl ‐tartaric acid. The cocrystals of glycine and β‐alanine with dl ‐tartaric acid, i.e. (I) and (II), respectively, contain chains of amino acid zwitterions, similar to the structure of pure glycine. In the structures of the molecular salts of amino acids, the amino acid cations form isolated dimers [of β‐alanine in (III), GABA in (IV) and dl ‐AABA in (V)], which are linked by strong O—H…O hydrogen bonds. Moreover, the three crystal structures comprise different types of dimeric cations, i.e. (AA)+ in (III) and (V), and A+A+ in (IV). Molecular salts (IV) and (V) are the first examples of molecular salts of GABA and dl ‐AABA that contain dimers of amino acid cations. The geometry of each investigated amino acid (except dl ‐AABA) correlates with the melting point of its mixed crystal.  相似文献   

17.
Thalassemia is a genetic blood disorder requiring life‐long blood transfusions. This process often results in iron overload and can be treated by an iron‐chelating agent, like deferiprone (3‐hydroxy‐1,2‐dimethylpyridin‐4‐one), C7H9NO2, in an oral formulation. The first crystal structure of deferiprone, (Ia), was reported in 1988 [Nelson et al. (1988). Can. J. Chem. 66 , 123–131]. In the present study, two novel polymorphic forms, (Ib) and (Ic), of deferiprone were identified concomitantly with polymorph (Ia) during the crystallization experiments. Polymorph (Ia) was redetermined at low temperature for comparison of the structural features and lattice energy values with polymorphs (Ib) and (Ic). Polymorph (Ia) crystallized in the orthorhombic space group Pbca, whereas both polymorphs (Ib) and (Ic) crystallized in the monoclinic space group P21/c. The asymmetric units of (Ia) and (Ib) contain one deferiprone molecule, while polymorph (Ic) has three crystallographically independent molecules (A, B and C). All three polymorphs have similar hydrogen‐bonding features, such as an R22(10) dimer formed by O—H…O hydrogen bonds, an R43(20) tetramer formed by C—H…O hydrogen bonds and π–π interactions, but the polymorphs differ in their molecular arrangements in the solid state and are classified as packing polymorphs. O—H…O and C—H…O hydrogen bonds lead to the formation of two‐dimensional hydrogen‐bonded parallel sheets which are interlinked by π–π stacking interactions. In the three‐dimensional crystal packing, the deferiprone molecules were aggregated as corrugated sheets in polymorphs (Ia) and (Ic), whereas in polymorph (Ib), they were aggregated as a square‐grid network. The characteristic crystalline peaks of polymorphs (Ia), (Ib) and (Ic) were established through powder X‐ray diffraction analysis. The Rietveld analysis was also performed to estimate the contribution of the polymorphs to the bulk material.  相似文献   

18.
The title neutral polymer, [Gd(C6H4NO2)(C8H4O4)(H2O)2]n, contains an extended two‐dimensional wave‐like lanthanide carboxylate layer decorated by isonicotinate (IN) ligands. The GdII atom is eight‐coordinated by four carboxylate O atoms from four benzene‐1,2‐dicarboxylate (1,2‐bdc) ligands, two 1,2‐bdc carboxylate O atoms from one chelating IN ligand and two terminal water molecules, forming a bicapped trigonal–prismatic coordination geometry. The wave‐like layers are stacked in an …ABAB… packing mode along the c‐axis direction. Strong hydrogen‐bonding interactions further stabilize the structure of the title compound.  相似文献   

19.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

20.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde with phenols under basic conditions yields the corresponding 5‐aryloxy derivatives; the subsequent reaction of these carbaldehydes with substituted acetophenones yields the corresponding chalcones, which in turn undergo cyclocondensation reactions with hydrazine in the presence of acetic acid to form N‐acetylated reduced bipyrazoles. Structures are reported for three 5‐aryloxycarbaldehydes and the 5‐piperidino analogue, and for two reduced bipyrazole products. 5‐(2‐Chlorophenoxy)‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13ClN2O2, (II), which crystallizes with Z′ = 2 in the space group P, exhibits orientational disorder of the carbaldehyde group in each of the two independent molecules. Each of 3‐methyl‐5‐(4‐nitrophenoxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13N3O4, (IV), 3‐methyl‐5‐(naphthalen‐2‐yloxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C21H16N2O2, (V), and 3‐methyl‐1‐phenyl‐5‐(piperidin‐1‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H19N3O, (VI), (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐5′‐(2‐chlorophenoxy)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C27H22ClN7O2, (IX) and (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐3′‐methyl‐5′‐(naphthalen‐2‐yloxy)‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C31H25N7O2, (X), has Z′ = 1, and each is fully ordered. The new compounds have all been fully characterized by analysis, namely IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. In each of (II), (V) and (IX), the molecules are linked into ribbons, generated respectively by combinations of C—H…N, C—H…π and C—Cl…π interactions in (II), C—H…O and C—H…π hydrogen bonds in (V), and C—H…N and C—H…O hydrogen bonds in (IX). The molecules of compounds (IV) and (IX) are both linked into sheets, by multiple C—H…O and C—H…π hydrogen bonds in (IV), and by two C—H…π hydrogen bonds in (IX). A single C—H…N hydrogen bond links the molecules of (X) into centrosymmetric dimers. Comparisons are made with the structures of some related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号