首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structure of the title compound, K[Ag(CN)2]·C12H24O6, conventionally denoted K(18‐crown‐6)Ag(CN)2, where 18‐crown‐6 is 1,4,7,10,13,16‐hexa­oxa­cyclo­octa­decane, is characterized by closely packed linear chains formed by the coordination of the nitrile N atoms of the [Ag(CN)2] anions to the K+ cations. The K atoms lie on centers of inversion and are additionally bound to the six O atoms of the crown ether.  相似文献   

2.
The structures of a 14‐crown‐4 ether containing both benzo and cyclo­hexano substituents, 2,6,13,17‐tetraoxatricyclo‐[16.4.0.07,12]docosa‐1(18),19,21‐triene, C18H26O4, and its lith­ium complex, [2,6,13,17‐tetraoxatricyclo[16.4.0.07,12]docosa‐1(18),19,21‐triene‐κ4O](thio­cyanato‐N)­lith­ium(I), [Li(NCS)‐(C18H26O4)], are presented. The conformation of the free crown, (I), is not preorganized for cation binding, as its donor dipoles are oriented towards opposite sides of the crown ring. The Li+‐crown complex, (II), exhibits two formula units in the asymmetric unit. The binding conformation observed in (II) does not completely reorient the dipoles to one point, resulting in a long Li—O bond length [2.068 (5) and 2.073 (5) Å].  相似文献   

3.
1‐Methyl‐2‐[4‐phenyl‐6‐(pyridinium‐2‐yl)­pyridin‐2‐yl]­pyridinium diperchlorate, C22H19N32+·2ClO4, (I), and 2‐[4‐(methoxy­phenyl)‐2,2′‐bipyridin‐6‐yl]‐1‐methyl­pyridinium iodide, C23H20N3O+·I, (II), both crystallize in the monoclinic space group P21/c. In contrast with the monocharged mol­ecule of (II), the doubly charged mol­ecule of (I) contains an additional protonated pyridine ring. One of the two perchlorate counter‐anions of (I) interacts with the cation of (I) via an N—H⋯O hydrogen bond. In (II), two mol­ecules related by a centre of symmetry are connected by weak π–π interactions, forming dimers in the crystal structure.  相似文献   

4.
The novel PtII–dibenzo‐18‐crown‐6 (DB18C6) title complex, μ‐[tetrakis­(thio­cyanato‐S)­platinum(II)]‐N:N′‐bis{[2,5,8,­15,18,21‐hexa­oxa­tri­cyclo­[20.4.0.19,14]­hexa­cosa‐1(22),9(14),10,12,23,25‐hexaene‐κ6O]­potassium(I)}, [K(C20H24O6)]2[Pt(SCN)4], has been isolated and characterized by X‐ray diffraction analysis. The structure analysis shows that the complex displays a quasi‐one‐dimensional infinite chain of two [K(DB18C6)]+ complex cations and a [Pt(SCN)4]2? anion, bridged by K+?π interactions between adjacent [K(DB18C6)]+ units.  相似文献   

5.
The title salt, (1,4,7,10,13,16‐hexa­oxa­cyclo­octa­decane‐κ6O)[(iso­thio­cyanato)­tri­phenyl­borato‐κS]­potassium(I), [K(C19H15BNS)(C12H24O6)] or [K(SCNBPh3)(18‐crown‐6)], where 18‐crown‐6 is 1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane and [SCNBPh3] is the (iso­thio­cyanato)­tri­phenyl­borate anion, exhibits a supramol­ecular structure that is best described as a helical coordination polymer or molecular screw. This unusual supramolecular structure is based on a framework in which the SCN ion bridges the chelated K+ ion and the B atom of BPh3 in a μ2 fashion. The X‐ray crystal structure of the title salt has been determined at 100 (1) and 293 (2) K. The K+ ion exhibits axial ligation by the S atom of the [SCNBPh3] anion, with a K—S distance of 3.2617 (17) Å (100 K). The trans‐axial ligand is an unexpected η2‐bound C=C bond of a phenyl group (meta‐ and para‐C atoms) that belongs to the BPh3 moiety of a neighboring mol­ecule. The K—C bond distances span the range 3.099 (3)–3.310 (3) Å (100 K) and are apparently retained in CDCl3 solution (as evidenced by 13C NMR spectroscopy). By virtue of the latter interaction, the supramolecular structure is a helical coordination polymer, with the helix axis parallel to the b axis of the unit cell. IR spectroscopy and semi‐empirical molecular orbital (AM1) calculations have been used to investigate further the electronic structure of the [SCNBPh3] ion.  相似文献   

6.
The title compound, bis(2,4‐dinitrophenolato‐κ2O,O′)(1,4,7,10,13,16‐hexaoxadecane‐κ6O)barium(II), [Ba(C6H3N2O5)2(C12H24O6)], is a 1:1 complex of barium(II)–2,4‐di­nitro­phenolate and 1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane (18‐crown‐6). Its structure is located on a crystallographic inversion centre. The temperature dependence of the crystal structure has been studied. The monoclinic β angle of the P21n space group increases with increasing temperature. The packing structure of the complex is stabilized by intermolecular C—H?O interactions.  相似文献   

7.
In earlier papers, we described the synthesis and structures of bis(3‐nitro­fur­azan‐4‐yl) ether, C4N6O7, (I), bis­[3‐(nitro‐N,N,O‐azoxy)­fur­azan‐4‐yl] ether, C4N10O9, (II), and bis[3‐­(5H‐[1,2,3]­triazolo­[4,5‐c]­fur­azan‐5‐yl)­fur­azan‐4‐yl] ether, C8N14O5, (III). Here we compare the structures of (I)–(III) with those of four 3‐cyano­difur­aza­nyl ethers, namely bis(3‐­cyano­fur­azan‐4‐yl) ether, C6N6O3, (IV), 3‐cyano­fur­aza­nyl 3‐­nitro­fur­aza­nyl ether, C5N6O5, (V), 3,4‐bis(3‐cyano­fur­azan‐4‐­yl­oxy)­fur­azan, C8N8O5, (VI), and bis­[3‐(3‐cyano­fur­azan‐4‐­yl­oxy)­fur­azan‐4‐yl]­diazene, C10N12O6, (VII). It was found that the geometric parameters of the difur­aza­nyl ether fragments are similar in these structures and therefore not influenced by substituent effects; however, the conformation of this fragment is different, viz. structures (I), (III), (V) and (VI) have approximate C2 symmetry, and structures (II), (IV) and (VII) have Cs symmetry. Dense crystal packing (1.626–1.898 Mg m−3) is characteristic for all these hydrogen‐free compounds. A linear correlation is also determined between crystal density and `molecular density' (M/V), where M is the mass of a mol­ecule and V is the molecular volume.  相似文献   

8.
The mol­ecule of the title compound {systematic name: di‐μ‐sulfido‐bis[di­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octade­cane‐κ6O)barium(II)] bis­[1,2‐benzisothiazol‐3(2H)‐one 1,1‐dioxide]}, [Ba2S2(C12H24O6)2(H2O)4](C7H5NO3S)2, lies on an inversion centre. The BaII atom encapsulated by the 18‐crown‐6 ring is coordinated by the six O atoms of the crown, two water O atoms and two bridging S atoms. The four‐membered ring composed of the BaII atoms and the bridging S atoms makes a dihedral angle of 67.1 (1)° with the crown‐ether ring. The aromatic ring system of the saccharin moiety is essentially planar. The packing is built up from layers of the mol­ecules and is stabilized by three intermolecular O—H?O hydrogen bonds.  相似文献   

9.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

10.
In the two compounds (borohydrido)(1,4,7,10,13,16‐hexa­oxacyclo­octa­decane‐κ6O)potassium, [K(BH4)(C12H24O6)], (I), and (borohydrido)(1,4,7,10,13,16‐hexa­oxa‐2,3:11,12‐di­benzo­cyclo­octa­deca‐2,11‐diene‐κ6O)(tetra­hydro­furan)­potassium, [K(BH4)(C4H8O)(C20H24O6)], (II), the K atom is bound to the six O atoms of the crown ether and to a tridentate borohydride group, with further coordination to a tetra­hydro­furan mol­ecule in (II). The alkali metal ion environment is thus distorted hexa­gonal–pyramidal in (I) and bipyramidal in (II).  相似文献   

11.
Molecular and Crystal Structure of Rubidium(dibenzo‐18‐crown‐6)pentaiodide [Rb(C20H24O6)]I5 [Rb(Dibenzo‐18‐crown‐6)]2(I5)2 is obtained as dark brown columns by reacting dibenzo‐18‐crown‐6, rubidium iodide, and iodine in a molar ratio of 1 : 1 : 6 in ethanole / dichlormethane (1:1). [Rb(C20H24O6)]2(I5)2 crystallizes with four formula units per unit cell in the orthorhombic space group Pnma with a = 1725.15(2) pm, b = 1863.76(3) pm and c = 1885.19(3) pm. The crystal structure consists of pentaiodide units I5, which are linked to one another by head‐to‐tail‐contacts. The I2 units, which stick out of the chain, are twisted against each other, in a way that neither a cis or a trans configuration is formed. By secondary bonding, the iodine atoms form nets of 18‐member planar rings with an almost rectangular form. This net‐like structural element has not been described up to now.  相似文献   

12.
Pentazole Derivates and Azides Formed from them: Potassium‐Crown‐Ether Salts of [O3S—p‐C6H4—N5] and [O3S—p‐C6H4—N3] O3S—p‐C6H4—N2+ was reacted with sodium azide at —50 °C in methanol, yielding a mixture of 4‐pentazolylbenzenesulfonate and 4‐azidobenzenesulfonate (amount‐of‐substance ratio 27:73 according to NMR). By addition of KOH in methanol at —50 °C a mixture of the potassium salts K[O3S—p‐C6H4—N5] and K[O3S—p‐C6H4—N3] was precipitated (ratio 60:40). A solution of this mixture along with 18‐crown‐6 in tetrahydrofurane yielded the crystalline pentazole derivate [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF by addition of petrol ether at —70 °C. From the same solution upon evaporation and redissolution in THF/petrol ether the crystalline azide [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF was obtained. A solution of the latter in chloroform/toluene under air yielded [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O. According to their X‐ray crystal structure determinations [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF and [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF have the same kind of crystal packing. Differences worth mentioning exist only for the atomic positions of the pentazole ring as compared to the azido group and for one THF molecule which is coordinated to the potassium ion; different orientations of the THF molecule take account for the different space requirements of the N5 and the N3 group. In [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O there exists one unit consisting of one [K‐18‐crown‐6]+ and one [O3S‐C6H4—N3] ion and another unit consisting of two [O3S‐C6H4—N3] ions joined via two [K‐18‐crown‐6]+ ions and one water molecule. The rate constants for the decomposition [O3S‐C6H4—N5] → [O3S‐C6H4—N3] + N2 in methanol were determined at 0 °C and —20 °C.  相似文献   

13.
In the title hydrated adduct, 1,4,10,13‐tetraoxa‐7,16‐diazo­nia­cyclo­octa­decane bis(4‐amino­benzene­sulfonate) dihydrate, C12H28N2O42+·2C6H6NO3S·2H2O, formed between 7,16‐di­aza‐18‐crown‐6 and the dihydrate of 4‐amino­benzene­sulfonic acid, the macrocyclic cations lie across centres of inversion in the orthorhombic space group Pbca. The anions alone form zigzag chains, and the cations and anions together form sheets that are linked via water mol­ecules and anions to form a three‐dimensional grid.  相似文献   

14.
Reaction of O,O′‐diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with 1,10‐diaza‐18‐crown‐6, 1,7‐diaza‐18‐crown‐6, or 1,7‐diaza‐15‐crown‐5 leads to the N‐thiophosphorylated bis‐thioureas N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 ( H2LI ), N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐18‐crown‐6 ( H2LII ) and N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐15‐crown‐5 ( H2LIII ). Reaction of the potassium salts of H2LI–III with a mixture of CuI and 2,2′‐bipyridine ( bpy ) or 1,10‐phenanthroline ( phen ) in aqueous EtOH/CH2Cl2 leads to the dinuclear complexes [Cu2(bpy)2LI–III] and [Cu2(phen)2LI–III] . The structures of these compounds were investigated by 1H, 31P{1H} NMR spectroscopy, and elemental analysis. The crystal structures of H2LI and [Cu2(phen)2LI] were determined by single‐crystal X‐ray diffraction. Extraction capacities of the obtained compounds in comparison to the related compounds 1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(=CMe2)CH2P(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(S)NHP(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 towards the picrate salts LiPic, NaPic, KPic. and NH4Pic were also studied.  相似文献   

15.
The title polymeric compound, catena‐poly­[dipotassium [bis­[μ‐N‐salicyl­idene‐β‐alaninato(2−)]‐κ4O,N,O′:O′′;κ4O′′:O,N,O′‐dicopper(II)]‐di‐μ‐iso­thio­cyanato‐κ2N:S2S:N], {K[Cu(NCS)(C10H9NO3)]}n, consists of [iso­thio­cyanato(N‐salicyl­idene‐β‐alaninato)copper(II)] anions connected through the two three‐atom thio­cyanate (μ‐NCS) and the two anti,anti‐μ‐­carboxyl­ate bridges into infinite one‐dimensional polymeric anions, with coulombically interacting K+ counter‐ions with coordination number 7 constrained between the chains. The CuII atoms adopt a distorted tetragonal–bipyramidal coordination, with three donor atoms of the tridentate Schiff base and one N atom of the bridging μ‐NCS ligand in the basal plane. The first axial position is occupied by a thio­cyanate S atom of a symmetry‐related μ‐NCS ligand at an apical distance of 2.9770 (8) Å, and the second position is occupied by an O atom of a bridging carboxyl­ate group from an adjacent coordination unit at a distance of 2.639 (2) Å.  相似文献   

16.
The novel compound bis(1,4,7,10‐tetraoxa­cyclo­do­decane)­cadmium(II) decaiodide, [Cd(C8H16O4)2]I10, contains the [Cd(12‐crown‐4)2]2+ complex cation, triiodide ions and iodine mol­ecules. Two triiodide ions and two iodine mol­ecules form isolated twisted I102? rings. The geometry of the complex cation is as expected, e.g.d(Cd—O) = 2.366 (4) and 2.394 (4) Å.  相似文献   

17.
In the title complex, [Au(C12H8N5O4)(C18H15P)], the coordination geometry about the AuI ion is linear, with one deprotonated 1,3‐bis(4‐nitro­phenyl)­triazenide ion, [O2NC6H4N=N–NC6H4NO2], acting as a monodentate ligand (two‐electron donor), and one neutral tri­phenyl­phosphine mol­ecule completing the metal coordination. The triazenide ligand is almost planar (r.m.s. deviation = 0.0767 Å), with the largest interplanar angle being 11.6 (7)° between the phenyl ring of one of the terminal 4‐nitro­phenyl substituents and the plane defined by the N=N—N triad. The Au—N and Au—P distances are 2.108 (5) and 2.2524 (13) Å, respectively. Pairs of mol­ecules generated by centrosymmetry are associated into a supramolecular array via intermolecular C—H⋯O inter­actions, and N⋯C and N⋯O π–π interactions.  相似文献   

18.
In both title compounds, (acetyl­acetonato‐O,O′)­bis(3‐cyano­pyridine‐N)­nickel(II), (I), and (acetyl­acetonato‐O,O′)­bis(4‐cyanopyridine‐N)­nickel(II), (II), both [Ni(C5­H7O2)2(C6H4N2)2], the NiII atom, which is situated on a centre of symmetry, is octahedrally coordinated. Distances and angles for (I) and (II), respectively, are: Ni—O 2.009 (2)/2.016 (2) and 2.0110 (16)/2.0238 (18) Å, Ni—N 2.116 (3) and 2.179 (2) Å, O—Ni—O 91.86 (10) and 90.19 (7)°, and O—Ni—N 91.27 (11)/90.19 (11) and 89.65 (8)/90.79 (7)°.  相似文献   

19.
Uranyl nitrate hexahydrate reacts with bis­[2‐(2‐hydroxy­phenoxy)­ethoxy]­ethane (C18H22O6), denoted LH2 hereafter, in the presence of triethylamine to give ­triethylammonium aqua[2,2′‐(3,6‐dioxaoctane‐1,8‐diyldioxy)diphenolato‐κ2O,O′](nitrato‐κ2O,O′)dioxouranium(VI), (Et3NH)[UO2(H2O)L(NO3)], which possesses a symmetry plane. The uranyl ion is coordinated to the two phenoxide O atoms, a nitrate ion and a water mol­ecule (first sphere); the water mol­ecule is itself held in the crown ether chain by hydrogen‐bonding interactions, thus ensuring second‐sphere coordination by the ligand L.  相似文献   

20.
In the title compound [systematic name: tri­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)(2‐nitro­phenolato‐κO)­barium(II)–aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)‐ bis(2‐nitro­phenolato‐κ2O,O′)­barium(II)–2‐nitro­phenolate (1/1/1)], [Ba(C12H24O6)(C6H4NO3)(H2O)3][Ba(C12H24O6)(C6H4NO3)2(H2O)](C6H4NO3), the two BaII atoms encapsulated by the 18‐crown‐6 rings have different coordinations. Although both BaII atoms are coordinated to the six O atoms of the crowns, in the neutral moiety, the BaII atom is coordinated to one terminal O atom from a water mol­ecule, two phenolate O atoms and two nitro‐group O atoms, while in the cationic moiety, the BaII atom is coordinated to three terminal O atoms from water mol­ecules and one phenolate O atom. Both the crowns are eclipsed and translated along the b direction. In the asymmetric unit, the three components are interconnected by four O—H?O interactions. The packing is stabilized by two intermolecular C—H?O interactions and by one O—H?O interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号