首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the title compound, 2‐[(methylphenylamino)methyl]‐1‐(phenylsulfonyl)indole, C22H20N2O2S, the indole system is not strictly planar and the dihedral angle between the fused rings is 2.7 (1)°. The angles around the S atom of the sulfonyl substituent deviate significantly from the ideal value for tetrahedral geometry. The pyramidalization at the indole N atom is very small. Of the two C—H?O interactions, one influences the orientation of indole with respect to the sulfonyl group and the other determines the orientation of the phenyl bound to sulfonyl. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 89.6 (1)° with the best plane of the indole. The molecular packing is stabilized by C—H?π and C—H?O hydrogen bonds.  相似文献   

2.
Crystal structure analysis of the title compound, C13H12ClNO, reveals three crystallographically independent mol­ecules in the asymmetric unit. The main conformational difference between these mol­ecules is the orientation of the phenyl rings with respect to the pyrrole rings. The coplanar arrangement of the aldehyde groups attached to the pyrrole rings influences the pyrrole‐ring geometry. The C2—C3 and N1—C5 bonds are noticeably longer than the C4—C5 and N1—C2 bonds. Two independent mol­ecules of the title compound form dimers via intermolecular C—H⃛O hydrogen bonds [DA = 3.400 (3) Å and D—H⃛A = 157°]. The perpendicular orientation of the phenyl and pyrrole rings of one independent mol­ecule and its symmetry‐related mol­ecule allows C—H⃛π interactions, with an H⃛centroid distance of 2.85 Å and a C—H⃛π angle of 155°. The distances between the H atom and the pyrrole‐ring atoms indicate that the C—H bond points towards one of the bonds in the pyrrole ring.  相似文献   

3.
The title compound, C28H27N3O4S, crystallizes in the centrosymmetric space group P21/n, with one mol­ecule in the asymmetric unit. In the indole ring, the dihedral angle between the fused rings is 3.6 (1)°. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 79.2 (1)° with the best plane of the indole moiety. The phenyl ring of the di­methyl­amino­phenyl group is orthogonal to the phenyl ring of the phenyl­sulfonyl group. The dihedral angle formed by the weighted least‐squares planes through the pyrrole ring and the phenyl ring of the di­methyl­amino­phenyl group is 7.8 (1)°. The molecular structure is stabilized by C—H?O and C—H?N interactions.  相似文献   

4.
In the title compound, C26H22N2O2S, the tetra­hydro­pyridine ring has a conformation intermediate between half‐chair and sofa. The tetrahydroquinoline mean plane makes a dihedral angle of 73.3 (1)° with the cyclopentene ring, which adopts an envelope conformation, and an angle of 45.45 (4)° with the indole best plane. The dihedral angle between the benzene and pyrrole rings is 2.6 (1)°. The orientations of the phenyl ring on the sulfonyl group and of the indole are governed by weak C—H?O interactions. The packing of the mol­ecule in the solid state is stabilized by C—H?O and C—H?N hydrogen bonds.  相似文献   

5.
The title compound, C13H13ClN4O2, contains both a phenyl and a triazole ring, both of which are approximately coplanar with the entire mol­ecule. The triazole ring has substituents at the 1‐, 2‐ and 4‐positions. Intramolecular C—H⃛O and C—H⃛N interactions, together with intermolecular C—H⃛O and C—H⃛π interactions, help to stabilize the structure.  相似文献   

6.
The piperidine ring in the title compound, C22H28N4S, exhibits a chair conformation. The thio­semicarbazone moiety adopts an extended conformation, and the planar phenyl rings are oriented equatorially with respect to the piperidine ring. Two intermol­ecular hydrogen bonds involving the S atom form molecular pairs, and the crystal structure is stabilized by weak C—H⃛π interactions in addition to van der Waals forces.  相似文献   

7.
In the mol­ecule of the title compound, C16H13BrO, the two benzene rings are rotated in opposite directions with respect to the central C—C=C—C part of the mol­ecule. The phenone O atom deviates from the least‐squares plane of the mol­ecule by 0.300 (3) Å. In the crystal structure, mol­ecules are paired through C—H⋯π interactions. The molecular pairs along [001] are hydrogen bonded through three translation‐related co‐operative hydrogen bonds in the `bay area', forming molecular chains, which are further hydrogen bonded through C—H⋯Br weak interactions, forming (010) molecular layers. In the third direction, there are only weak van der Waals interactions. The co‐operative hydrogen bonds in the `bay area' are discussed briefly.  相似文献   

8.
9,10‐Di­phenyl‐9,10‐epi­dioxy­anthracene, C26H18O2, (I), was accidentally used in a photo­oxy­genation reaction that produced 9,10‐di­hydro‐10,10‐di­methoxy‐9‐phenyl­anthracen‐9‐ol, C22H20O3, (II). In both compounds, the phenyl rings are approximately orthogonal to the anthracene moiety. The conformation of the anthracene moiety differs as a result of substitution. Intramolecular C—H⃛O interactions in (I) form two approximately planar S(5) rings in each of the two crystallographically independent mol­ecules. The packing of (I) and (II) consists of molecular dimers stabilized by C—H⃛O interactions and of molecular chains stabilized by O—H⃛O interactions, respectively.  相似文献   

9.
In the title compound, C16H17NO3·H2O, the pyrrole ring is distorted slightly from ideal C2v symmetry. Three strong hydrogen bonds link the substituted pyrrole and water mol­ecules to form infinite chains, in which the hydrogen bonds form rings and chain patterns. Two intermolecular C—H?π interactions maintain the internal cohesion between these chains. The molecular structure differs slightly from that of the isolated mol­ecule calculated by ab initio quantum‐mechanical calculations. In the latter model, the non‐H substituent atoms share the plane of the pyrrole ring, except for the phenyl group, which lies almost perpendicular to this plane.  相似文献   

10.
The structure of the title compound, C12H9N5O4, reveals an almost planar mol­ecule (r.m.s. deviation = 0.061 Å), in which the interplanar angle between the phenyl rings is 5.7 (1)° and the largest interplanar angle is that between the phenyl ring and the nitro group of one of the 4‐nitro­phenyl substituents [8.8 (3)°]. The observed mol­ecular conformation suggests a delocalization of π‐electrons extended over the diazo­amine group and the terminal aryl substituents. Intermolecular N—H⃛O interactions between the twofold screw‐related mol­ecules give rise to helical chains along the [010] direction. Intermolecular C—H⃛O interactions then generate sheets of mol­ecules in the (10) plane, and these sheets are held together by N⃛C and O⃛O π–π interactions.  相似文献   

11.
The title compound, C23H15Cl2NO3, crystallizes with two independent mol­ecules in the asymmetric unit. The chroman­one moiety consists of a benzene ring fused with a six‐membered heterocyclic ring which adopts a sofa conformation. The five‐membered spiro­isoxazoline ring is in an envelope conformation. The p‐chloro­phenyl rings bridged by the five‐membered ring are nearly perpendicular to each other. The chromanone moiety of one mol­ecule packs into the cavity formed by the p‐chloro­phenyl rings of a second mol­ecule through the formation of C—H?π interactions. The structure is stabilized by weak C—H?O, C—H?Cl and C—H?π interactions.  相似文献   

12.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

13.
The title compounds, 4‐(2‐naphthyl­oxy­methyl­carbonyl)­morpholine, C16H17NO3, (I), and 4‐methyl‐1‐(2‐naphthyl­oxy­methyl­carbonyl)­piper­azine, C17H20N2O2, (II), are potential antiamnesics. The morpholine ring in (I) and the piperazine ring in (II) adopt chair conformations. In (I), the mol­ecules are linked by weak intermolecular C—H⃛O interactions into chains that have a graph‐set motif of C(10), while in (II), the mol­ecules are linked by weak intermolecular C—H⃛O interactions that generate two C(7) graph‐set motifs. The dihedral angle between the naphthalene moiety and the best plane through the morpholine ring is 20.62 (4)° in (I), while the naphthalene moiety is oriented nearly perpendicular to the mean plane of the piperazine ring in (II).  相似文献   

14.
In tris(4‐hydroxy­phenyl)­methane (or 4,4′,4′′‐methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H⃛O hydrogen bonds [O⃛O = 2.662 (2) and 2.648 (2) Å] into two‐dimensional square networks that are twofold interpenetrated. In tris(4‐hydroxy­phenyl)­methane–4,4′‐bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H⃛O [O⃛O = 2.694 (3) Å] and C—H⃛O [C⃛O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O⃛N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.  相似文献   

15.
The title compounds, C20H25N2O2S+·I?, (I), and C29H25BrN2O2S, (II), respectively, both crystallize in space group P. The pyrrole ring subtends an angle with the sulfonyl group of 33.6° in (I) and 21.5° in (II). The phenyl ring of the sulfonyl substituent makes a dihedral angle with the best plane of the indole moiety of 81.6° in (I) and 67.2° in (II). The lengthening or shortening of the C—N bond distances in both compounds is due to the electron‐withdrawing character of the phenyl­sulfonyl group. The S atoms are in distorted tetrahedral configurations. The molecular structures are stabilized by C—H?O and C—H?I interactions in (I), and by C—H?O and C—H?N interactions in (II).  相似文献   

16.
The title compound, C6H8NO+·H2PO4, consists of 2‐(hy­droxy­methyl)­pyridinium and di­hydrogen­phosphate ions. The di­hydrogen­phosphate moieties are linked into chains by pairs of P—O—H⃛O—P hydrogen bonds. The 2‐(hydroxy­methyl)­pyridinium cations are connected to the di­hydrogen­phosphate units by O—H⃛O and N—H⃛O hydrogen bonds. Weak π–π interactions help to determine the interchain packing.  相似文献   

17.
In the title compound, [Fe(C5H5)(C14H13O)], the plane of the heterocyclic ring is almost perpendicular to the plane of the substituted cyclo­penta­dienyl ring, and the heterocyclic ring adopts a half‐chair conformation. The conformation of the nearly parallel cyclo­penta­dienyl (Cp) rings [the dihedral angle between their planes is 2.7 (1)°] is almost halfway between eclipsed and staggered, and the rings are mutually twisted by about 19.4 (2)° (mean value). The mean lengths of the C—C bonds in the substituted and unsubstituted cyclo­penta­dienyl ring are 1.420 (2) and 1.406 (3) Å, respectively, and the Fe—C distances range from 2.029 (2) to 2.051 (2) Å. The phenyl and unsubstituted cyclo­penta­dienyl rings are involved in C—H⃛π interactions, with intermolecular H⃛centroid distances of 2.85 and 3.14 Å for C—H⃛π(Ph), and 2.88 Å for C—H⃛π(Cp). In two of these interactions, the C—H bond points towards one of the ring bonds rather than towards the ring centroid. In the crystal structure, the C—H⃛π interactions connect the mol­ecules into a three‐dimensional framework.  相似文献   

18.
The title compound, C16H19NO5, crystallizes as a centrosymmetric dimer through strong O—H⋯O hydrogen‐bonding interactions between the hydroxy­phenyl and morpholino­carbonyl groups. The morpholino­carbonyl group is almost perpendicular to the propenoate moiety. Electron delocalization in the N—C(=O) fragment leads to the formation of hydrogen‐bonded S(5) ring motifs through C—H⋯O interactions.  相似文献   

19.
The crystal structure of 4,6‐bis(methylsulfanyl)‐1‐phthalimidopropyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H17N5O2S2, (VI), reveals an unusual folded conformation due to an apparent intramolecular C—H⃛π interaction between the 6‐methyl­­sul­fanyl and phenyl groups. However, the closely related compound 6‐methyl­sulfanyl‐1‐phthalimido­propyl‐4‐(pyrroli­din‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C21H22N6O2S, (VII), exhibits a fully extended structure, devoid of any intramol­ecular C—H⃛π or π–π interactions. The crystal packing of both mol­ecules involves intermolecular stacking interactions due to aromatic π–π interactions. In addition, (VI) exhibits intermolecular C—H⃛O hydrogen bonding and (VII) exhibits dimerization of the mol­ecules through intermolecular C—H⃛N hydrogen bonding.  相似文献   

20.
The two title compounds, both with formula C18H16ClN3O, are structurally similar Schiff bases derived from the condensation of 4‐chloro­benzaldehyde or 2‐chloro­benzaldehyde with 4‐amino­anti­pyrine in methanol solution. As expected, both compounds adopt trans configurations about the central C=N bonds. In the crystal structure of the 4‐chloro analogue, mol­ecules are linked through weak C—H⋯O hydrogen bonds, forming chains running along the a axis. In the crystal structure of the 2‐chloro analogue, mol­ecules are linked through weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the ab plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号