首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
From the standard interaction between electrons and two level systems a superconductive pairing is envisaged. The solutions of the Eliashberg equations for the critical temperature as well as the zero temperature gap lead to expressions as exp (?1/√λ0) instead of exp (?1/λ0) in the BCS case, which enhances considerably the superconducting properties in the weak coupling case.  相似文献   

2.
We study the effect of the magnetic field on the pairing state competition in organic conductors (TMTSF)2X by applying random phase approximation to a quasi-one-dimensional extended Hubbard model. We show that the singlet pairing, triplet pairing and the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconducting states may compete when charge fluctuations coexist with spin fluctuations. This rises a possibility of a consecutive transition from singlet pairing to FFLO state and further to Sz = 1 triplet pairing upon increasing the magnetic field. We also show that the singlet and Sz = 0 triplet components of the gap function in the FFLO state have “d-wave” and “f-wave” forms, respectively, which are strongly mixed.  相似文献   

3.
We have performed high-resolution photoemission spectroscopy (PES) on FeSr2YCu2O7+δ, of which superconductivity of Tc=49 K was recently reported. We clearly observed opening of a d-wave-like superconducting gap and estimated the maximum gap value (Δmax) to be 10 meV at 15 K. This gap value gives 2Δmax/kBTc∼5, suggesting a strong-coupling nature of superconductivity in FeSr2YCu2O7+δ. Comparative PES study with superconducting and insulating samples shows that the valence band is rigidly shifted as a function of doping without evolution of additional states within the insulating gap.  相似文献   

4.
Solid state 19F NMR in the temperature range from 96 to 366 K and room temperature EPR studies of fluorinated buckminsterfullerene C60F58 have been carried out. The temperature dependence of the line width and the spin-lattice relaxation time show hindered molecular motion with the activation energy of ΔEa=1.9 kcal/mol. Neither phase transition nor random rotation of C60F58 have been obtained. The spin-lattice relaxation rate is strongly affected by the presence of paramagnetic centers, namely, dangling C-C bonds yielding localized unpaired electrons. Such broken bonds are caused by C-C bond rupture in a cage-opened structure of hyperfluorinated species.  相似文献   

5.
We present a theory of superconductivity in doped insulators. In the magnetic metal state of the compound we obtain the self-consistency equations for the superconducting state in the spin-dependent impurity bands of both extended and localized states in the initial insulator gap. A BCS-type triplet pairing field is considered. We show that the superconducting gap in which single-electron extended states do not exist is overlapped by the distribution of the localized states. The formation of a latent superconducting gap is discussed in connection with the unusual properties of high-T c compounds. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 5, 419–424 (10 March 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

6.
Polycrystalline iron-based superconducting NdFeAsO0.88F0.12 was prepared via solid-state reaction in ambient pressure. Small amounts of ferromagnetic impurities were detected by Scanning Electron Microscopy (SEM) analysis. To study the influence of magnetism on superconducting properties of the sample, magnetization M(T, H) measurements were performed in fields up to 1.5 T and in the temperature range of 5-60 K. The abnormal behavior was observed in the χ(T) curves, and the magnetization hysteresis loops (MHLs) can be described by a sum of the contributions of superconductive hysteresis, ferromagnetic hysteresis of the impurities and the paramagnetic background of the isolated Nd3+ ions. The influence of the ferromagnetic impurities and the paramagnetic background were investigated and discussed. After the corrections of the magnetism contributions, the intrinsic superconductive MHLs as well as the critical current density were obtained.  相似文献   

7.
We report the 11B and 195Pt NMR measurements in non-centrosymmetric superconductors Li2(Pd1−xPtx)3B (x = 0.0, 0.2, 0.5, 1.0). From the measurements of spin–lattice relaxation time (T1), we found that there was a coherence peak (CP) just below superconducting transition temperature (Tc) for x = 0–0.5 but no CP in x = 1. We demonstrated that the system for x = 0–0.5 were BCS superconductors but there existed line node in the superconducting gap for x = 1.0. The 195Pt Knight Shift in x = 0.2 decreased below Tc, indicating spin-singlet state. The results showed that BCS superconducting state evolves into an exotic state with line-nodes in the gap function when x is increased, as the spin–orbit coupling is enhanced.  相似文献   

8.
We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES) of a heavily boron-doped superconducting diamond film (Tc=7.2 K) in order to study the electronic structure near the Fermi level (EF). Careful determination of measured momentum space that across Γ point in the Brillouin zone (BZ) and increase of an energy resolution provide further spectroscopic evidence that EF is located at the highly dispersive diamond-like bands, indicating that holes at the top of the diamond-like valence band play an essential role for the conducting properties of the heavily boron-doped superconducting diamond for this boron-doping region (effective carrier concentration of 1.6%). The SXARPES intensities at EF were also mapped out over BZ to obtain experimental Fermi surface sheets and compared with calculations.  相似文献   

9.
We have studied superconducting properties by measuring the electrical resistivity and magnetization for a single crystal of Rh17S15 with a superconducting transition temperature Tc=5.4 K. The upper critical field Hc2(0) and the lower critical field Hc1(0) were obtained as 20.5 and 0.0033 T, respectively. Correspondingly, the coherence length and the penetration depth were estimated to be 40 and 4900 Å, respectively, indicating that Rh17S15 is a typical type-II superconductor with strong correlations of conduction electrons with a 4d-electron character of Rh atoms. The present electron correlations are formed to be enhanced with increasing pressure.  相似文献   

10.
We review our nuclear-magnetic resonance (NMR) and nuclear-quadrupole-resonance (NQR) studies in superconducting Sr2RuO4, which have been performed in order to investigate the gap structure and the pairing symmetry in the superconducting state and magnetic fluctuations in the normal state. The spin-lattice relaxation rate (1/T1) of a high-quality sample with shows a sharp decrease without a coherence peak just below Tc, followed by a T3 behavior down to 0.15 K. This result indicates that the superconducting gap in pure Sr2RuO4 is a highly anisotropic character with a line-node gap. The Knight shift, which is related to the spin susceptibility, is unchanged in the superconducting state irrespective of the direction of the applied fields and various magnitude of the field. This result strongly suggests that the superconducting pairs are in the spin-triplet state, and the spin direction of the triplet pairs is considered to be changed by small fields of several hundred Oe.  相似文献   

11.
The Heavy Fermion state in UPd2Al3 may be approximately described by a dual model where two of the three U-5 f electrons are in a localized state split by the crystalline electric field into two low lying singlets with a splitting energy Δ≃ 6 meV. The third 5 f electron has itinerant character and forms the Heavy Electron bands. Inelastic neutron scattering and tunneling experiments suggest that magnetic excitons, the collective propagating crystal field excitations of the localized 5 f electrons, mediate superconducting (sc) pairing in UPd2Al3. A theory for this novel mechanism is developed within a nonretarded approach. A model for the magnetic exciton bands is analyzed and compared with experiment. The sc pair potential which they mediate is derived and the gap equations are solved. It is shown that this mechanism favors an odd parity state which is nondegenerate due to the combined symmetry breaking by the crystalline electric field and the AF order parameter. A hybrid model including the spin fluctuation contribution to the pairing is also discussed. Received 22 October 2001 and Received in final form 28 February 2002  相似文献   

12.
The conductivity and dielectric permittivity spectra of single-crystalline La1.87Sr0.13CuO4 are directly measured with the electric field polarized perpendicular to the CuO planes (Ec) covering the frequency range 10-40 cm−1 and temperatures 5-300 K. We observe in the superconducting state a well pronounced excitation with strongly temperature dependent parameters. We suggest that the excitation is caused by the transverse Josephson plasma mode that appears due to the different strengths of Josephson coupling between the superconducting charge stripes in the neighboring and next-nearest neighboring copper-oxygen planes of La1.87Sr0.13CuO4. A strongly enhanced low-frequency (below 15 cm−1) absorption is seen in the superconducting state that is assigned to delocalized quasiparticles of as yet unknown origin.  相似文献   

13.
We study the interplay between magnetic correlations of two Kondo impurities and superconducting singlet pairing. Performing a Schrieffer-Wolff transformation in the zero-bandwidth limit of the two-impurity Anderson model we obtain the Hamiltonian of two magnetic impurities and we add a superconducting term to the conduction electrons. The model allows us to study the effect of the magnetic correlation between the impurities on the superconducting ground state. At zero temperature, different superconducting ground states can be obtained depending on the magnitude of magnetic coupling between S1 and S2. For increasing coupling, the superconducting region is enlarged showing an interesting result: in the strong coupling limit, where the impurities are in a very strong ferromagnetic correlation state, half of the conduction electrons are decoupled from the local moments of the impurities and take advantage of the superconducting pairing lowering the ground state energy. On the contrary, when the coupling between S1and S2 decreases, the scenario of the two independent Kondo impurities in presence of superconductivity emerges and all the conduction electrons are involved in the pair breaking physics. At finite temperature, we obtain the phase diagram and we observe a region of parameters where the re-entrance phenomenon occurs.  相似文献   

14.
15.
We measured the anomalous change in the work function of Bi2Sr2CaCu2O8 around a critical temperature (Tc ≈ 85 K). The work function becomes a minimum at Tc; the work function decreases in a normal-conductive state and then increases in a superconductive state as the temperature decreases. An increase in the work function for a transition from a normal-conductive state to a superconductive state at 0 K is about 9 meV. The contribution of the chemical potential and the surface dipole barrier to the work function are discussed.  相似文献   

16.
17.
We propose a model of electron pairing via spin fluctuations in doped insulators. The bare states for the superconducting condensate correspond to impurity bands in the original band gap of the undoped material. We obtain a complete set of equations for the superconducting state. We show that fermion pairing in impurity bands of extended states is possible, and thus so is superconductivity, if localized spin-0 bosons are produced. The latter are necessarily accompanied by localized spin-1 bosons, which are responsible for the relationship between singlet and triplet pairing channels of quasiparticles. Zh. éksp. Teor. Fiz. 114, 1765–1784 (November 1998)  相似文献   

18.
Nickel-doped ZnO (Zn1−xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni has a chemical valence of 2+. According to the magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at ∼2 eV below the Fermi energy EF, which is of Ni 3d origin. No emission was found at EF, suggesting the insulating nature of the film.  相似文献   

19.
There is growing evidence that the unconventional spatial inhomogeneities in the doped high-TcTc superconductors are accompanied by the pairing of electrons, subsequent phase transitions and condensation into coherent states. We show that such pairing states can be obtained from phase separation instabilities near level crossings. Conditions for coherent pairing instabilities are examined using exact diagonalization of Hubbard-like pyramid structures under variation of coupling and interaction strengths. We also evaluate the behavior of the energy charge gap in the vicinity of level crossings using a parametrization of coupling to the apical site to represent out-of-plane effects. These results provide a simple microscopic explanation of (correlation induced) supermodulation of the coherent pairing gap observed in scanning tunneling microscopy measurements at atomic scale in Bi2Sr2CaCu2O8 + δ.  相似文献   

20.
We used the deep-level transient spectroscopy (DLTS) to investigate the electronic properties of p-type CuInSe2 (CIS) polycrystalline thin-film solar cells. We detected electron (or minority) traps with activation energies ranging from Ec−0.1 to Ec−0.22 eV (where Ec is the energy of electrons at the conduction band minimum). While varying the filling pulse duration, we observed the gradual increase in the amplitude of the DLTS signal for these states until it apparently saturates at a pulse duration ∼1 s. Increasing the duration of the filling pulse also results in broadening the DLTS signals and shifting the maximum of these signals towards lower temperature, whereas the high-temperature sides coincide. We also detected a hole (or majority) trap around a temperature of 190 K. Using a model that allows us to distinguish between bandlike states and localized ones based on the dependence of the shape of their DLTS-signal on the filling-pulse duration, we relate the electron trap to bandlike states and the hole trap to localized ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号