首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 762 毫秒
1.
This study reports synthesis and characterization of poly(MMA-co-BA)/Cloisite 30B (organo-modified montmorillonite clay) nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Copolymers have been synthesized with MMA:BA monomer ratio of 4:1, and varying clay loading (1–5 wt% monomer). The poly(MMA-co-BA)/Cloisite 30B nanocomposites have been characterized for their thermal and mechanical properties. Ultrasonically synthesized nanocomposites have been revealed to possess higher thermal degradation resistance and mechanical strength than the nanocomposites synthesized using conventional techniques. These properties, however, show an optimum (or maxima) with clay loading. The maximum values of thermal and mechanical properties of the nanocomposites with optimum clay loading are as follows. Thermal degradation temperatures: T10% = 320 °C (4 wt%), T50 = 373 °C (4 wt%), maximum degradation temperature = 384 °C (4 wt%); glass transition temperature = 64.8 °C (4 wt%); tensile strength = 20 MPa (2 wt%), Young’s modulus = 1.31 GPa (2 wt%), Percentage elongation = 17.5% (1 wt%). Enhanced properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites are attributed to effective exfoliation and dispersion of clay nanoparticles in copolymer matrix due to intense micro-convection induced by ultrasound and cavitation. Clay platelets help in effective heat absorption with maximum surface interaction/adhesion that results in increased thermal resistivity of nanocomposites. Hindered motion of the copolymer chains due to clay platelets results in enhancement of tensile strength and Young’s modulus of nanocomposite. Rheological (liquid) study of the nanocomposites reveals that nanocomposites have higher yield stress and infinite shear viscosity than neat copolymer. Nonetheless, nanocomposites still display shear thinning behavior – which is typical of the neat copolymer.  相似文献   

2.
This paper describes the preparation of poly(vinyl chloride) (PVC) nanocomposites (NCs) reinforced with modified zirconia (ZrO2) nanoparticles (NPs). The ZrO2 NPs were defined as efficient filler for PVC NCs. For achieving the best dispersion and improvement of properties, the surface of ZrO2 NPs was modified by Bovine Serum Albumin (BSA). Carboxylic acids and amines are important functional groups of BSA which handle the grafting BSA on the surface of ZrO2 NPs. The PVC/ZrO2-BSA NCs were fabricated by incorporation of various amounts of the ZrO2-BSA NPs (3, 6 and 9 wt%) into PVC matrix. All the above processes were accomplished by ultrasonication as a green and environmentally-friendly method. Also, the magnetic and mechanical stirrer was used for the preparation of samples but the results are not suitable and the aggregation was observed which indicated the use of ultrasonic irradiation is the best method for the preparation of NC. The products were characterized by Fourier transform infrared spectroscopy, Transmission electron microscopy, Field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Ultraviolet–visible spectroscopy, photoluminescence spectroscopy, energy dispersive X-ray spectroscopy, wettability, and mechanical tests. The achieved PVC/ZrO2-BSA NCs showed high thermal stability, good mechanical, optical and wettability properties compared to the pure PVC. In addition, among the obtained NCs, the PVC/ZrO2-BSA NC 6 wt% showed the best improvement.  相似文献   

3.
The present study reports synthesis and characterization of poly(MMA–co–BA)/ZnO nanocomposites using ultrasound-assisted in-situ emulsion polymerization. Methyl methacrylate (MMA) was copolymerized with butyl acrylate (BA), for enhanced ductility of copolymer matrix, in presence of nanoscale ZnO particles. Ultrasound generated strong micro-turbulence in reaction mixture, which resulted in higher encapsulation and uniform dispersion of ZnO (in native form – without surface modification) in polymer matrix, as compared to mechanical stirring. The nanocomposites were characterized for physical properties and structural morphology using standard techniques such as XRD, FTIR, particle size analysis, UV–Visible spectroscopy, electrical conductivity, TGA, DSC, FE-SEM and TEM. Copolymerization of MMA and BA (in presence of ZnO) followed second order kinetics. Thermal stability (T10% = 324.9 °C) and glass transition temperature (Tg = 67.8 °C) of poly(MMA-co-BA)/ZnO nanocomposites showed significant enhancement (35.1 °C for 1 wt% ZnO and 15.7 °C for 4 wt% ZnO, respectively), as compared to pristine poly(MMA–co–BA). poly(MMA–co–BA)/ZnO (5 wt%) nanocomposites possessed the highest electrical conductivity of 0.192 μS/cm and peak UV absorptivity of 0.55 at 372 nm. Solution rheological study of nanocomposites revealed enhancement in viscosity with increasing ZnO loading. Maximum viscosity of 0.01 Pa-s was obtained for 5 wt% ZnO loading.  相似文献   

4.
In this work, SiO2 nanoparticles (NPs) were modified with bovine serum albumin (BSA) under ultrasound irradiations as a green and fast route to achieve their good dispersion. Subsequently, different weight percentages of the modified NPs (3, 6, and 9 wt%) were incorporated in poly(vinyl chloride) (PVC) as the matrix. Thermogravimetric analysis of the SiO2-BSA NPs indicated that 12 wt% of the modifier was loaded on the surface of SiO2 NPs. Encapsulation of the SiO2-BSA resulted in a meaningful improvement in the optical, mechanical and thermal characteristics of the prepared PVC nanocomposites (NCs). X-ray diffraction (XRD) patterns for the PVC/SiO2-BSA NCs showed a crystalline behavior for the NC with 6 wt% of the SiO2-BSA originated from the phosphate buffer on the NPs. Water contact angle of the PVC/SiO2-BSA NCs showed that the hydrophilicity enhanced with increasing of the NPs contents.  相似文献   

5.
Exfoliated graphite nanoplatelets (xGnP) filled 4,4'-Bis (3,4-dicyanophenoxy) biphenyl (BPh) nanocomposites were prepared by a resin transfer molding process. The rheological behavior of the BPh pre-polymer, and the morphology and electrical, mechanical and thermal properties of the xGnP/BPh nanocomposites were systematically investigated. The results showed that the xGnP/BPh pre-polymer possessed a higher complex viscosity and storage modulus than the pure BPh and that the xGnP could significantly enhance the mechanical and electrical properties of the resulted nanocomposites. The electrical percolation threshold of the xGnP/BPh nanocomposites was between 5 and 10 wt% xGnP. The flexural strength and modulus of the xGnP/BPh nanocomposites with 10 wt% xGnP exhibited maximum values and their thermal stabilities were greatly improved. Those novel xGnP/BPh nanocomposites could have advanced applications in areas like aerospace and military industry.  相似文献   

6.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

7.
Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20 wt%) were formulated (pH  7) using whey protein (3 wt%), three kinds of hydrocolloids (0.1–0.5 wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5 °C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool–heat cyclic method (40 to ?40 °C) was performed to examine stability via crystallization phenomena of the dispersed phase.Ultrasonication energy input duplication from 11 kJ to 25 kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS  1% after 10 days of storage) at 0.5 wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D50 = 0.615 μm compared to D50 = 1.3 μm using method A) with narrower particle size distribution and in viscosity reduction.DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5 wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions.  相似文献   

8.
The synthesis of facet-controlled structures with precise morphology and exposed reactive surface is one of the key research challenges. We effectively endeavoured to obtain the monodisperse octahedral bismuth vanadate microcrystals with exposed {1 0 1},{2 0 0},{3 1 2} and {0 2 1} dominant facets through an optimized sonochemical assisted hydrothermal process. A pulse sonication (5-s ON and 2-s OFF cycle, 21 W ultrasonic power and 20 kHz ultrasonic frequency) for 30 mins followed by 1 h hydrothermal treatment was found to yield the preferred octahedral morphology. The microscopic and X-ray analysis suggested a potent role of ultrasonic waves for the initial seed growth and its evolution into a well-defined monodisperse microcrystals. The density functional theory (DFT) calculations revealed strongly localized bandgap states with a bandgap of ~2.47 eV. The PEC measurements for water oxidation demonstrated the efficacy of these microcrystals as photoanode. Notably, the optimized octahedral BiVO4 microstructure exhibited a superior performance as evident from photocurrent density ~0.9 mAcm−2 at 1.23 V vs. RHE and %IPCE value of ~22% compared to analogous photoanodes under visible light irradiation.  相似文献   

9.
Nickel based porous solid was synthesized with 20 kHz ultrasonic irradiation. The reaction of Ni(II) nitrate hexahydrate with 1,3,5-benzene tricarboxylic acid in N,N-Dimethylformamide (DMF) as the sole solvent under ultrasonic radiation produced porous Ni-BTC MOF. Choice of correct solvent for the ultrasonic treatment was proven important. The effect of varying ultrasonic powers (40%, 60% and 80% of 750 W) along with different temperature conditions (50 °C, 60 °C, 70 °C and 80 °C) influenced the respective yield. A very high yield of 88% Ni-BTC MOF was obtained from 80% ultrasonic power at 60 °C. BET surface areas of the MOF crystals measured by N2 gas adsorption isotherms were in the range of 960–1000 m2/g.  相似文献   

10.
The effectiveness of ultrasonic extraction of phenolics and flavonoids from defatted hemp, flax and canola seed cakes was compared to the conventional extraction method. Ultrasonic treatment at room temperature showed increased polyphenol extraction yield and antioxidant capacity by two-fold over the conventional extraction method. Different combinations of ultrasonic treatment parameters consisting of solvent volume (25, 50, 75 and 100 mL), extraction time (20, 30 and 40 min) and temperature (40, 50, 60 and 70 °C) were selected for polyphenol extractions from the seed cakes. The chosen parameters had a significant effect (p < 0.05) on the polyphenol extraction yield and subsequent antioxidant capacity from the seed cakes. Application of heat during ultrasonic extraction yielded higher polyphenol content in extracts compared to the non-heated extraction. From an orthogonal design test, the best combination of parameters was 50 mL of solvent volume, 20 min of extraction time and 70 °C of ultrasonic temperature.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(5):1714-1721
In this study, nickle/iron (Ni/Fe) nanoparticles were synthesized by liquid phase reductive method in the presence of 20 kHz ultrasonic irradiation to improve nanoparticles’ disparity and avoid agglomeration. The characterized results showed that this method has obviously modified most of the particles in term of sizes and specific surface areas. Meanwhile, the improved nanoscale Ni/Fe particles were employed for the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) as a function of some influential factors (Ni content, Ni/Fe nanoparticles dosage, reaction temperature and initial pH values) and degradation path. Experimental results showed that 2,4-DCP was first adsorbed by Ni/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The application of ultrasonic irradiation for Ni/Fe nanoparticles synthesis was found to significantly enhance the removal efficiency of 2,4-DCP. Consequently, the phenol production rates increased from 68% (in the absence of ultrasonic irradiation) to 87% (in the presence of ultrasonic irradiation) within 180 min. Nearly 96% of 2,4-DCP was removed after 300 min reaction with these optimized conditions: Ni content over Fe0 3 wt%, initial 2,4-DCP concentration 20 mg L−1, Ni/Fe dosage 3 g L−1, initial pH value 3.0, and reaction temperature 25 °C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0737 min−1. This study suggested that the presence of ultrasonic irradiation in the synthesis of nanoscale Ni/Fe particles could be a promising technique to enhance nanoparticle’s disparity and avoid agglomeration.  相似文献   

12.
In this work, hybrid nanocomposites based on anatase titania:polypyrrole (TiO2:PPy) were directly obtained from a simple, one-step, ultrasonic (UT)-assisted synthesis. The properties of these crystalline nanocomposites were compared with those of others fabricated using cold (Cold)-assisted synthesis without any UT assistance, which required a hydrothermal treatment (HT) to yield crystalline anatase titania in the nanocomposite (TiO2:PPy) at low temperature (130 °C) and in a short time (3 h). The SEM results demonstrated that the UT-assisted synthesis is a feasible method to obtain anatase TiO2:PPy nanocomposites with controlled morphology using low energy. The Fourier transform infrared (FT-IR) bands of the crystalline nanocomposites exhibited a shift with respect to neat components, which was attributed to the strong interaction between the secondary amine groups (N–H) of PPy and the oxygen from TiO2. The acceptable absorption in the visible region (λmax = 670 nm) indicates that these nanocomposites are good candidates for harvesting energy in solar cells. Devices based on these nanocomposites were built to evaluate their electrical properties. An increase in the photocurrent was observed for the devices prepared with the nanocomposites from the UT-assisted synthesis.  相似文献   

13.
《Solid State Ionics》2009,180(40):1646-1651
NiO–C nanocomposite was prepared by a spray pyrolysis method using a mixture of Ni(NO3)2 and citric acid solution at 600 °C. The microstructure and morphology of the NiO–C composite were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) mapping, and thermogravimetric analysis (TGA). The results showed that the NiO nanoparticles were surrounded by amorphous carbon. Electrochemical tests demonstrated that the NiO–C nanocomposites exhibited better capacity retention (382 mAh g 1 for 50 cycles) than that of pure NiO (141 mAh g 1 for 50 cycles), which was also prepared by spray pyrolysis using only Ni(NO3)2 as precursor. The enhanced capacity retention can be mainly attributed to the NiO–C composite structure, composed of NiO nanoparticles surrounded by carbon, which can accommodate the volume changes during charge–discharge and improve the electrical conductivity between the NiO nanoparticles.  相似文献   

14.
Cu-BTC (BTC = 1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m2/g was obtained from the crystals taken with the solvent condition of water:DMF = 70:30.  相似文献   

15.
Low temperature drying (LTD) allows high-quality dried products to be obtained, preserving the nutritional properties of fresh foods better than conventional drying, but it is a time-consuming operation. Power ultrasound (US) could be used to intensify LTD, but it should be taken into account that process variables, such as the level of applied power, have an influence on the magnitude and extension of the ultrasonic effects. Therefore, the aim of this work was to assess the influence of the level of applied ultrasonic power on the LTD of apple, analyzing the drying kinetics and the quality of the dried product. For that purpose, apple (Malus domestica cv. Granny Smith) cubes (8.8 mm side) were dried (2 m/s) at two different temperatures (10 and −10 °C), without and with (25, 50 and 75 W) US application. In the dried apple, the rehydration kinetics, hardness, total phenolic content, antioxidant capacity and microstructure were analyzed to evaluate the impact of the level of applied ultrasonic power.At both temperatures, 10 and −10 °C, the higher the ultrasonic power level, the shorter the drying time; the maximum shortening of the drying time achieved was 80.3% (at −10 °C and 75 W). The ultrasonic power level did not significantly (p < 0.05) affect the quality parameters analyzed. Therefore, US could be considered a non-thermal method of intensifying the LTD of fruits, like apple, with only a mild impact on the quality of the dried product.  相似文献   

16.
A new ultrasonic micro-molding system was used to process polylactide (PLA) and fabricate reduced dimension specimens. Plasticization and molding of PLA were achieved by applying ultrasonic waves after feeding the polymer into a plasticizing chamber. Chemical and physical characteristics of processed PLA varied depending on the processing window (i.e. changes in ultrasonic wave amplitude between 14.2 and 48.1 μm and molding pressure between 0.5 in 6 bars). In terms of chemical effects, the application of ultrasound can lead to lower molecular weights (e.g. decreases of more than 45% in the weight average molecular weight), revealing partial degradation of the material. Also, the processed materials exhibited slightly higher thermal degradability than pure PLA because ultrasonic vibrations break molecular linkages and worsen the polymer structure. Finally, the processing conditions for the preparation of PLA specimens could be optimized without causing degradation and preserving structural characteristics and mechanical properties. Specifically, the use of an amplitude of 48.1 μm and a pressure of 3 bars gave samples with the same molecular weight as the raw material (i.e. 117,500 g/mol as opposed to 117,300 g/mol for Mw).  相似文献   

17.
A novel sonochemical method for direct preparation of nanocrystalline antimony selenoiodide (SbSeI) has been established. The SbSeI gel was synthesized using elemental Sb, Se, and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2 W/cm2) at 50 °C for 2 h. The product was characterized by using techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and optical diffuse reflection spectroscopy (DRS). The SEM and HRTEM investigations exhibit that the as-prepared samples are made up of large quantity nanowires with lateral dimensions of about 20–50 nm and lengths reaching up to several micrometers and single crystalline in nature.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(6):1958-1963
A simple sonochemical route was developed for the preparation of gold nanoparticles/boron nitride sheets (AuNPs/BNS) nanocomposites without using reducing or stabilizing agents. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–vis absorption spectra were used to characterize the structure and morphology of the nanocomposites. The experimental results showed that AuNPs with approximately 20 nm were uniformly attached onto the BNS surface. It was found that the AuNPs/BNS nanocomposites exhibited good catalytic activity for the reduction of H2O2. The modified electrochemical sensor showed a linear range from 0.04 to 50 mM with a detection limit of 8.3 μM at a signal-to-noise ratio of 3. The findings provide a low-cost approach to the production of stable aqueous dispersions of nanoparticles/BNS nanocomposites.  相似文献   

19.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

20.
Exchange coupled (Pr,Tb)2(Fe,Nb,Zr)14B/α-Fe nanocomposites have been produced by melt spinning. A trend for perpendicular and planar c-axis orientation of the 2:14:1 phase was observed in the free surface of ribbons spun at speeds below 10 m/s and at optimal speeds, respectively. Higher wheel speeds led to the formation of an amorphous phase that transformed to 2:14:1 phase around 680°C. Optimum magnetic properties were found in samples spun at 14–17 m/s and annealed at 700°C for 20 min. The loop squareness was also found to depend mainly on the microstructure that is very sensitive to the sample composition. A few percentage of Nb and Zr suppressed the grain growth, resulting in a drastic improvement of magnetic properties, with approximate 50% enhancement in the intrinsic coercivity and an increase in maximum energy product from 5.6 kOe and 14.7 MGOe for the (Nb,Zr)-free sample to 8.2 kOe and 20.3 MGOe for the (Nb,Zr)-substituted samples, respectively. The significant improvement in magnetic properties originated from a much finer and homogeneous nanocomposite microstructure with an average grain size of 20 nm, leading to a high remanence of 0.73 Ms. Henkel plots indicate the enhancement of exchange coupling between hard and soft magnetic phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号