首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In the remarkably short span of 2 years, longwave infrared focal plane arrays (FPAs) of Type-II InAs/GaSb strained layer superlattice (SLS) photodiodes have advanced from 320 × 256 format to 1024 × 1024 format while simultaneously shrinking the pitch from 30 μm to 18 μm. Despite a dark current that is presently higher than state-of-the-art mercury cadmium telluride photodiodes with the same ∼10 μm cutoff wavelength, the high pixel operability and high (∼50%) quantum efficiency of SLS FPAs enable excellent imagery with temporal noise equivalent temperature difference better than 30 mK with F/4 optics, integration time less than 1 ms, and operating temperature of 77 K or colder. We present current FPA performance of this promising sensor technology.  相似文献   

2.
We are developing resonator-QWIPs for narrowband and broadband long wavelength infrared detection. Detector pixels with 25 μm and 30 μm pitches were hybridized to fanout circuits and readout integrated electronics for radiometric measurements. With a low to moderate doping of 0.2–0.5 × 1018 cm−3 and a thin active layer thickness of 0.6–1.3 μm, we achieved a quantum efficiency between 25 and 37% and a conversion efficiency between of 15 and 20%. The temperature at which photocurrent equals dark current is about 65 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 20 mK at 2 ms integration time and 60 K operating temperature. This good performance confirms the advantages of the resonator-QWIP approach.  相似文献   

3.
Short-/Mid-Wavelength dual-color infrared focal plane arrays based on Type-II InAs/GaSb superlattice are demonstrated on GaSb substrate. The material is grown with 50% cut-off wavelength of 2.9 μm and 5.1 μm for the blue channel and red channel, separately at 77 K. 320 × 256 focal plane arrays fabricated in this wafer is characterized. The peak quantum efficiency without antireflective coating is 37% at 1.7 μm under no bias voltage and 28% at 3.2 μm under bias voltage of 130 mV. The peak specific detectivity are 1.51 × 1012 cm·Hz1/2/W at 2.5 μm and 6.11x1011 cm·Hz1/2/W at 3.2 μm. At 77 K, the noise equivalent difference temperature presents average values of 107 mK and 487 mK for the blue channel and red channel separately.  相似文献   

4.
Alternative material systems on InP substrate provide certain advantages for mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR) and dual band MWIR/LWIR quantum well infrared photodetector (QWIP) focal plane arrays (FPAs). While InP/InGaAs and InP/InGaAsP LWIR QWIPs provide much higher responsivity when compared to the AlGaAs/GaAs QWIPs, AlInAs/InGaAs system facilitates completely lattice matched single band MWIR and dual band MWIR/LWIR FPAs.We present an extensive review of the studies on InP based single and dual band QWIPs. While reviewing the characteristics of InP/InGaAs and InP/InGaAsP LWIR QWIPs at large format FPA level, we experimentally demonstrate that the cut-off wavelength of AlInAs/InGaAs QWIPs can be tuned in a sufficiently large range in the MWIR atmospheric window by only changing the quantum well (QW) width at the lattice matched composition. The cut-off wavelength can be shifted up to ~5.0 μm with a QW width of 22 Å in which case very broad spectral response (Δλ/λp = ~30%) and a reasonably high peak detectivity are achievable leading to a noise equivalent temperature difference as low as 14 mK (f/2) with 25 μm pitch in a 640 × 512 FPA. We also present the characteristics of InP based two-stack QWIPs with wavelengths properly tuned in the MWIR and LWIR bands for dual color detection. The results clearly demonstrate that InP based material systems display high potential for dual band MWIR/LWIR QWIP FPAs needed by third generation thermal imagers.  相似文献   

5.
We have been developing corrugated quantum well infrared photodetector (C-QWIP) technology for long wavelength applications. A number of large format 1024 × 1024 C-QWIP focal plane arrays (FPAs) have been demonstrated. In this paper, we will provide a detailed analysis on the FPA performance in terms of quantum efficiency η and compare it with a detector model. We found excellent agreement between theory and experiment when both the material parameters and the pixel geometry were taken into account. By changing the number of quantum wells, doping density, spectral bandwidth and pixel size, a range of η from 13% to 37% was obtained. This range of η, combined with the wide spectral width, enables C-QWIPs to be operated at a high speed. For example, model analysis shows that a C-QWIP FPA with 10.7 μm cutoff and 25 μm pitch will have a thermal sensitivity of 16 mK at 2 ms integration time with f/2 optics in the presence of 900 readout noise electrons.  相似文献   

6.
We have demonstrated 384 × 288 pixels mid-wavelength infrared focal plane arrays (FPA) using type II InAs/GaSb superlattice (T2SL) photodetectors with pitch of 25 μm. Two p-i-n T2SL samples were grown by molecular beam epitaxy with both GaAs-like and InSb-like interface. The diode chips were realized by pixel isolation with both dry etching and wet etching method, and passivation with SiNx layer. The device one with 50% cutoff wavelength of 4.1 μm shows NETD  18 mK from 77 K to 100 K. The NETD of the other device with 50% cutoff wavelength at 5.6 μm is 10 mK at 77 K. Finally, the T2SL FPA shows high quality imaging capability at the temperature ranging from 80 K to 100 K which demonstrates the devices’ good temperature performance.  相似文献   

7.
Third generation thermal imagers with dual/multi-band operation capability are the prominent focus of the current research in the field of infrared detection. Dual band quantum-well infrared photodetector (QWIP) focal plane arrays (FPAs) based on various detection and fabrication approaches have been reported. One of these approaches is the three-contact design allowing simultaneous integration of the signals in both bands. However, this approach requires three In bumps on each pixel leading to a complicated fabrication process and lower fill factor.If the spectral response of a two-stack QWIP structure can effectively be shifted between two spectral bands with the applied bias, dual band sensors can be implemented with the conventional FPA fabrication process requiring only one In bump on each pixel making it possible to fabricate large format dual band FPAs at the cost and yield of single band detectors. While some disadvantages of this technique have been discussed in the literature, the detailed assessment of this approach has not been performed at the FPA level yet. We report the characteristics of a large format (640 × 512) voltage tunable dual-band QWIP FPA constructed through series connection of MWIR AlGaAs–InGaAs and LWIR AlGaAs–GaAs multi-quantum well stacks, and provide a detailed assessment of the potential of this approach at both pixel and FPA levels. The dual band FPA having MWIR and LWIR cut-off wavelengths of 5.1 and 8.9 μm provided noise equivalent temperature differences as low as 14 and 31 mK (f/1.5) with switching voltages within the limits applicable by commercial read-out integrated circuits. The results demonstrate the promise of the approach for achieving large format low cost dual band FPAs.  相似文献   

8.
The characteristics of SWIR (1.6–3 μm) 320 × 256 and 1024 × 1024 focal plane arrays (FPA’s) based on n-type In-doped HgCdTe heteroepitaxial layers are reported. The HgCdTe layers were grown by molecular beam epitaxy on silicon substrates with ZnTe and CdTe buffer layers. pn junctions were formed by arsenic ion implantation into HgCdTe film. Reverse current in the temperature range from 210 to 330 K was found to be limited by the diffusion mechanism. At the same time in the temperature range from 140 to 210 K the reverse current was dominated by the thermal generation of charge carriers through deep traps located in the middle of the band gap. At 170 K NETD was less than 40 mK.  相似文献   

9.
The increased signal-to-noise ratio (SNR) offered by functional Magnetic Resonance Imaging (fMRI) at 7T allows the acquisition of functional data at sub-millimetric spatial resolutions. However, simply reducing partial volume effects is not sufficient to precisely localize task-induced activation due to the indirect mechanisms that relate brain function and the changes in the measured signal.In this work T2* and T2 weighted Echo Planar Imaging (EPI) schemes based on Gradient Recalled Echo (GRE) and Spin Echo (SE) were evaluated in terms of temporal SNR, percent signal change, contrast to noise ratio (CNR), activation volume, and sensitivity and specificity to gray matter. Datasets were acquired during visual stimulation at in-plane resolutions ranging between 1.5 × 1.5 mm2 and 0.75 × 0.75 mm2 targeting the early visual cortex.While similar activation foci were obtained in all acquisitions, at in-plane resolutions of 1.0 × 1.0 mm2 and larger voxel sizes the T2 weighted contrast of SE-EPI allowed the identification of the activation site with better spatial accuracy. However, at sub-millimetric resolutions the decrease in temporal SNR significantly hampered the sensitivity and the extent of the activation site. On the other hand, high resolution T2* weighted data collected with GRE-EPI provided higher CNR and sensitivity, benefiting from the decreased physiological and partial volume effects. However, spurious activations originating from regions of blood drainage were still present in GRE data, and simple thresholding techniques were found to be inadequate for the removal of such contributions. The combination of 2-class and 3-class automated segmentations, performed directly in EPI space, allowed the selection of active voxels in gray matter. This approach could enable GRE-EPI to accurately map functional activity with satisfactory CNR and specificity to the true site of activation.  相似文献   

10.
In the present paper, design of a readout integrated circuit (ROIC) for hybrid matrix IR FPA is presented. The design solution involves a ROIC matrix formed by 2 × 2-element fragments (cells) in which all the four cell elements, connected to one common read line, share a common integrating capacity. It is shown that, with the proposed ROIC structure: (i) the ROIC charge capacitance can be increased by a factor of 6–10, thus enabling two–three-fold enhanced NETD value of hybrid far-IR FPAs; (ii) the total number of read lines in IR FPAs can be decreased twice compared to traditional IR FPA designs, thus facilitating, due to doubly increased line spacing, the design of photosignal preprocessing system integrated with ROIC; (iii) improved structural arrangement of adaptive photosignal preprocessing system can be proposed.  相似文献   

11.
For better selection of “tooth-like” dental restorative materials, it is of great importance to evaluate the thermal properties of the human tooth. A simple method capable of non-destructively characterizing the thermal properties of the individual layers (dentine and enamel) of human tooth is presented. The traditional method of monotonic heating regime was combined with infrared thermography to measure the thermal diffusivities of enamel and dentine layers without physically separating them, with 4.08 (±0.178) × 107 m2/s measured for enamel and 2.01 (±0.050) × 107 m2/s for dentine. Correspondingly, the thermal conductivity was calculated to be 0.81 W/mK (enamel) and 0.48 W/mK (dentine). To examine the dependence of thermal conductivity on the configuration of dentine microstructure (microtubules), the Maxwell-Eucken and Parallel models of effective thermal conductivity are employed. The effective thermal conductivity of dentine in the direction parallel to tubules was found to be about 1.1 times higher than that perpendicular to the tubules, indicating weak anisotropy. By adopting the Series model, the bulk thermal conductivity of enamel and dentine layers is estimated to be 0.57 W/mK.  相似文献   

12.
Microbolometers are extensively used for uncooled infrared imaging applications. These imaging units generally employ vanadium oxide or amorphous silicon as the active layer and silicon nitride as the absorber layer. However, using different materials for active and absorber layers increases the fabrication and integration complexity of the pixel structure. In order to reduce fabrication steps and therefore increase the yield and reduce the cost of the imaging arrays, a single layer can be employed both as the absorber and the active material. In this paper, we propose an all-ZnO microbolometer, where atomic layer deposition grown zinc oxide is employed both as the absorber and the active material. Optical constants of ZnO are measured and fed into finite-difference-time-domain simulations where absorption performances of microbolometers with different gap size and ZnO film thicknesses are extracted. Using the results of these optical simulations, thermal simulations are conducted using finite-element-method in order to extract the noise equivalent temperature difference (NETD) and thermal time constant values of several bolometer structures with different gap sizes, arm and film thicknesses. It is shown that the maximum performance of 171 mK can be achieved with a body thickness of 1.1 μm and arm thickness of 50 nm, while the fastest response with a time constant of 0.32 ms can be achieved with a ZnO thickness of 150 nm both in arms and body.  相似文献   

13.
This paper reports the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band quantum well infrared photodetector (QWIP) focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 to 5.1 μm and the FWHM of a long-wave infrared (LWIR) band extends from 7.8 to 8.8 μm. Dual-band QWIP detector arrays were hybridized with custom fabricated direct injection read out integrated circuits (ROICs) using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 70 K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NEΔT of 27 and 40 mK for MWIR and LWIR bands, respectively.  相似文献   

14.
As an approach for analyzing an uncooled infrared bolometer imager, a method is introduced which supposes that a thermal system is built into the infrared radiation detection mechanism. In this analysis, the bi-directional radiation energy flows between two thermal elements are considered and a radiation thermal conductance between them is defined. Based on the values of the radiation thermal conductances and conventional material thermal conductance, an equivalent thermal circuit for a bolometer detector element is extracted. Calculations were carried out using software written in visual C++. The analysis shows a Noise Equivalent Temperature Difference (NETD) of 50 mK is obtained as a typical value, assuming that no additional noise other than temperature fluctuation noise exists, and that the NETD becomes better as the system time constant built into the equivalent thermal circuit increases.  相似文献   

15.
We present recent results obtained on 15 μm pitch LWIR QWIP arrays at Sofradir. Based on experimental data gathered on several QWIP wafers, the performance (NETD) at the system level has been estimated. We show that, in spite of the small pitch, values as low as 50 mK can be achieved for rather closed optical systems (f/2.5) and for operating temperatures (74 K) compatible with available compact cryo-coolers.We also demonstrate that specific pixel configurations can be designed to investigate the pixel-to-pixel optical crosstalk. Such measurements can help to better understand the limitations set by the geometry of the pixel on the Modulation Transfer Function (MTF). In particular, we show that the optical crosstalk due to photon transfer through the inter-pixel space is rather small for unthinned devices.  相似文献   

16.
In this study, the synthesis of Ce0.8Sm0.2O1.9 (SDC) solid electrolyte by the ultrasound assisted co-precipitation method was accomplished to explore the effects of ultrasound power, ultrasound pulse ratio and probe type upon the ionic conductivity of SDC as well as the lattice parameter, the microstructure and the density. Fine powders of uniform crystallite sizes (average 11.70 ± 0.62 nm) were obtained, needing lower sintering temperature. The SDC powders were successfully sintered to a relative density of over 95% at 1200 °C (5 °C min?1) for 6 h. The micrograph of SDC pellets showed non-agglomerated and well-developed grains with average size of about 200 nm. X-ray diffraction analysis showed that the lattice parameter increased with increasing acoustic intensity and reached a maximum for the 14.94 W cm?2. Further, a linear relationship was detected between the lattice parameter and the ionic conductivity, inspiring a dopant like effect of US on the electrolyte properties. The highest ionic conductivity as σ800°C = 3.07 × 10?2 S cm?1 with an activation energy Ea = 0.871 kJ mol?1 was obtained with pulsed ultrasound for an acoustic intensity of 14.94 W cm?2, using 19 mm probe and 8:2 pulse ratio.  相似文献   

17.
Searching for gas exhalation around major tectonic contacts raises important methodological issues such as the role of the superficial soil and the possible long distance transport. These effects have been studied on the Xidatan segment of the Kunlun Fault, Qinghai Province, China, using measurement of the radon-222 and carbon dioxide exhalation flux. A significant radon flux, reaching up to 538 ± 33 mBq m?2 s?1 was observed in a 2–3 m deep trench excavated across the fault. On the soil surface, the radon flux varied from 7 to 38 mBq m?2 s?1, including on the fault trace, with an average value of 14.1 ± 1.0 mBq m?2 s?1, similar to the world average. The carbon dioxide flux on the soil surface, with an average value of 12.9 ± 3.3 g m?2 day?1, also remained similar to regular background values. It showed no systematic spatial variation up to a distance of 1 km from the fault, and no clear enhancement in the trench. However, a high carbon dioxide flux of 421 ± 130 g m?2 day?1 was observed near subvertical fractured phyllite outcrops on a hill located about 3 km north of the fault, at the boundary of the large-scale pull-apart basin associated with the fault. This high carbon dioxide flux was associated with a high radon flux of 607 ± 35 mBq m?2 s?1. These preliminary results indicate that, at the fault trace, it can be important to measure gas flux at the bottom of a trench to remove superficial soil layers. In addition, gas discharges need to be investigated also at some distance from the main fault, in zones where morphotectonics features support associated secondary fractures.  相似文献   

18.
《Ultrasonics》2014,54(4):1020-1028
This work is focused on the in vitro study of the effects induced by medical ultrasound (US) in murine fibroblast cells (NIH-3T3) at a low-intensity of exposure (spatial peak temporal average intensity Ita < 0.1 W cm2). Conventional 1 MHz and 3 MHz US devices of therapeutic relevance were employed with varying intensity and exposure time parameters. In this framework, upon cells exposure to US, structural changes at the molecular level were evaluated by infrared spectroscopy; alterations in plasma membrane permeability were monitored in terms of uptake efficiency of small cell-impermeable model drug molecules, as measured by fluorescence microscopy and flow cytometry. The results were related to the cell viability and combined with the statistical PCA analysis, confirming that NIH-3T3 cells are sensitive to therapeutic US, mainly at 1 MHz, with time-dependent increases in both efficiency of uptake, recovery of wild-type membrane permeability, and the size of molecules entering 3T3. On the contrary, the exposures from US equipment at 3 MHz show uptakes comparable with untreated samples.  相似文献   

19.
ObjectivesWe validate a 4D strategy tailored for 3 T clinical systems to simultaneously quantify function and infarct size in wild type mice after ischemia/reperfusion, with improved spatial and temporal resolution by comparison to previous published protocols using clinical field MRI systems.MethodsC57BL/6J mice underwent 60 min ischemia/reperfusion (n = 14) or were controls without surgery (n = 6). Twenty-four hours after surgery mice were imaged with gadolinium injection and sacrificed for post-mortem MRI and histology with serum also taken for Troponin I levels. The double ECG- and respiratory-triggered 3D FLASH (Fast Low Angle Shot) gradient echo (GRE) cine sequence had an acquired isotropic resolution of 344 μm, TR/TE of 7.8/2.9 ms and acquisition time 25–35 min. The conventional 2D FLASH cine sequence had the same in-plane resolution of 344 μm, 1 mm slice thickness and TR/TE 11/5.4 ms for an acquisition time of 20–25 min plus 5 min for planning. Left ventricle (LV) and right ventricle (RV) volumes were measured and functional parameters compared 2D to 3D, left to right and for inter and intra observer reproducibility. MRI infarct volume was compared to histology.ResultsFor the function evaluation, the 3D cine outperformed 2D cine for spatial and temporal resolution. Protocol time for the two methods was equivalent (25–35 min). Flow artifacts were reduced (p = 0.008) and epi/endo-cardial delineation showed good intra and interobserver reproducibility. Paired t-test comparing ejection volume left to right showed no significant difference for 3D (p = 0.37), nor 2D (p = 0.30) and correlation slopes of left to right EV were 1.17 (R2 = 0.75) for 2D and 1.05 (R2 = 0.50) for 3D.Quantifiable ‘late gadolinium enhancement’ infarct volume was seen only with the 3D cine and correlated to histology (R2 = 0.89). Left ejection fraction and MRI-measured infarct volume correlated (R2 > 0.3).ConclusionsThe 4D strategy, with contrast injection, was validated in mice for function and infarct quantification from a single scan with minimal slice planning.  相似文献   

20.
The influence of urban morphology of low-density built-up areas on spatial noise level attenuation of flyover aircrafts is investigated at a mesoscale. Six urban morphological parameters, including Building Plan Area Fraction, Complete Aspect Ratio, Building Surface Area to Plan Area Ratio, Building Frontal Area Index, Height-to-Width Ratio, and Horizontal Distance of First-row Building to Flight Path, have been selected and developed. Effects of flight altitude and horizontal flight path distance to site, on spatial aircraft noise attenuation, are examined, considering open areas and façades. Twenty sampled sites, each of 250 m * 250 m, are considered. The results show that within 1000 m horizontal distance of flight path to a site, urban morphology plays an important role in open areas, especially for the buildings with high sound absorption façades, where the variance of average noise level attenuation among different sites is about 4.6 dB at 3150 Hz. The effect of flight altitude of 200–400 ft on average noise level attenuation is not significant, within about 2 dB at both 630 Hz and1600 Hz in open areas. Urban morphological parameters influence the noise attenuation more in open areas than that on façades. Spatial noise attenuation of flyover aircrafts is mainly correlated to Building Frontal Area Index and Horizontal Distance of First-row Building to Flight Path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号