首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high-resolution infrared spectrum of N212C18O2 has been observed in the ν3 band (2314 cm?1) region of 12C18O2 with diode laser absorption spectroscopy of pulsed molecular beam. The geometry of N212C18O2 is similar to N212C16O2, a T-shaped structure with the nitrogen molecular axis pointing towards the carbon atom. The geometrical parameters of the T-shaped ground-state structure are determined as RNcmC = 3.7285(5) Å and (90?ΘNcmCO) = 6.85(3)°. The vibrational band origin of N212C18O2 corresponding to the ν3 mode of 12C18O2 shows a shift of 0.52499(10) cm?1 with respect to that of 12C18O2.  相似文献   

2.
There exists a problem with an in situ diagnostics of contamination of ethyl alcohol in a human being exhaled air. When ethyl alcohol in a mouth blowing (in a gaseous state) exists, the characteristic CH stretch absorption bands in CH3 and CH2 functional groups in ethanol (CH3CH2OH) appear at a wavelength of λ = 3.42 μm. To investigate the presence of ethyl alcohol in exhaled human air, the light beam of λ = 3.42 μm is passing through an air sample. If one alternately measures the intensity of the investigated beam and the reference, a percentage of ethanol in the air sample can be estimated using a sensitive nondispersive infrared (NDIR) system with a stable operating flow mass detector. To eliminate a mechanical chopper and noise generating stepper motors, a photonic chopper as a liquid crystal shutter for λ = 3.42 μm has been designed. For this purpose, an innovative infrared nematic liquid crystal mixture was intentionally prepared. The working mixture was obtained by a selective removal of CH bonds and its exchange by heavier polar substituents, what ensures a lack of absorption band of CH bonds. The paper presents theory, concept and final experimental results of the infrared nematic liquid crystals mixture and the liquid crystal shutter for breathalyzer applications.  相似文献   

3.
The thermal decomposition of dimethyl methylphosphonate (DMMP) on crystalline ceria thin films grown on Ru(0 0 0 1) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and infrared absorption reflection spectroscopy (IRAS). TPD experiments show that methanol and formaldehyde desorb as the two main products at 575 K, while water, formaldehyde and CO are produced above 800 K. IRAS studies demonstrate that DMMP adsorbs via the phosphoryl oxygen at 200 K, but the PO bond converts to a bridging OPO species at 300 K. DMMP decomposition initially occurs via POCH3 bond scission to form methyl methylphosphonate (MMP) and methyl phosphonate (MP) between 300 and 500 K; XPS and IRAS data are consistent with a methoxy intermediate on the surface at these temperatures. The more stable PCH3 bonds remain intact up to 700 K, and the only surface intermediate at higher temperatures is believed to be POx. Although the presence of POx decreases activity for DMMP decomposition, some activity on the ceria surface remains even after 7 cycles of adsorption and reaction. The ceria films become reduced by multiple DMMP adsorption-reaction cycles, with the Ce+4 content dropping to 30% after seven cycles. Investigations of DMMP reaction on reduced ceria surfaces show that CO and H2 are produced in addition to methanol and formaldehyde. Furthermore, DMMP decomposition activity on the reduced ceria films is almost completely inhibited after only 3 adsorption-reaction cycles. Similarities between DMMP and methanol chemistry on the ceria films suggest that methoxy is a key surface intermediate in both reactions.  相似文献   

4.
It was recently found that oxygen induces ordered reconstructions on several III–V surfaces. The most oxygen-rich reconstruction shows (3 × 1) periodicity. Based on first-principles investigations, a detailed atomic model is presented for this reconstruction. The uncommon periodicity is attributed to the highly stable InOIn trilayer below surface which also leads to stabilizing additional bonds within the surface layer. The strain induced by the trilayer is more effectively accommodated within the (3 × 1) reconstruction than within the competing (2 × 1) reconstruction due to smaller number of dimers. It is proposed that the experimentally found semiconductivity is reached by substitutional atoms within the surface layer. Suitable substitution preserves the magnitude of the bulk band gap.  相似文献   

5.
The initial oxidation on high-index silicon surfaces with (113) and (120) orientations at 820 K has been investigated by real-time X-ray photoemission spectroscopy (Si 2p and O 1s) using 687 eV photons. The time evolutions of the Sin+ (n = 1–4) components in the Si 2p spectrum indicate that the Si2 + state is suppressed on high-index surfaces compared with Si(001). The O 1s state consists of two components, a low-binding-energy component (LBC) and a high-binding-energy component (HBC). It is suggested that the O atom in strained SiOSi contributes to the LBC component. The reaction rates are slower on high-index surfaces compared with that on Si(001).  相似文献   

6.
The thermal chemistry of allyl alcohol (CH2CHCH2OH) on a Ni(100) single-crystal surface was studied by the temperature programmed desorption (TPD) and the X-ray photoelectron spectroscopy (XPS). The allyl alcohol adsorbs molecularly on the metal surface at 100 K. Intact molecular desorption from the surface occurs at temperatures around 180 K, but some molecules exhibit chemical reactivity on the surface: activation of the OH, CC, and CO bonds produces η1(O)-allyloxy CH2CHCH2O(a), η2(C, C) allyl alcohol (C(a)H2C(a)HCH2OH), and η3(C, C, O)-alkoxide (C(a)H2C(a)CH2 O(a)) intermediates. Further thermal activation of allyl alcohol on the surface yields propylene (CH2CHCH3), 1-propanol (CH3CH2CH2OH), propanal (CH3CH2CHO), and combustion and dehydrogenation products (H2O, H2, and CO). Propylene desorbs from the surface at temperatures of around 270 K. Hydrogenation to the η3(C, C, O)-alkoxide intermediate leads to the production of propanal which desorbs from the surface around 320 K, while hydrogenation of the η2(C, C) allyl alcohol intermediate produces 1-propanol, which desorbs at around 310 K. The co-adsorption of hydrogen atoms on the surface enhances the formation of the saturated alcohol, while co-adsorption of oxygen enhances the formation of both the saturated alcohol and the saturated aldehydes.  相似文献   

7.
The growth, structures, and vibrational properties of ultrathin manganese oxide films on Rh(111) had been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), low energy ion scattering spectroscopy (LEIS) and Auger electron spectroscopy (AES). MnOx grew in a layer-by-layer fashion on the Rh(111) surface. HREELS phonon features and XPS binding energies showed that an OMnO like tri-layer formed initially. Which was stable on the Rh(111) surface with MnOx coverage less than one monolayer. At above one monolayer, Mn3O4 was preferred as indicated from a four-phonon feature peaked at 13.3, 39, 68 and 83 meV in HREELS. Higher temperature oxidation and annealing were found to improve the long-range order of the MnOx films.  相似文献   

8.
The chemisorption of water (H2O and D2O) on a LaB6(100) surface was studied with reflection absorption infrared spectroscopy (RAIRS) and high resolution electron energy loss spectroscopy (HREELS). The clean surface was exposed to H2O and D2O at temperatures from 90 K to room temperature, and spectra were acquired after heating to temperatures as high as 1200 K. It was found that water molecularly adsorbs on the surface at 90 K as a monomer at low coverages and as amorphous solid water at higher coverages. Water adsorbs dissociatively at room temperature to produce surface hydroxyl species as indicated by OH/OD stretch peaks at 3676/2701 cm?1. Room temperature adsorption also reveals low frequency loss features in HREEL spectra near 300 cm?1 that are quite similar to results obtained following the dissociative adsorption of O2. In the latter case, the loss features were attributed to the LaO stretch of O atoms bridge-bonded between two La atoms. In the case of dissociative adsorption of H2O, the low frequency loss features could be due to either the LaO vibrations of adsorbed O or of adsorbed OH.  相似文献   

9.
Gold clusters supported on TiO2(110) exhibit unusual activity for the oxidation of methanol to formaldehyde. Temperature programmed desorption studies of methanol on Au clusters show that both Au and titania sites are necessary for methanol reaction. Isotopic labeling experiments with CD3OH demonstrate that reaction occurs via OH bond scission to form a methoxy intermediate. When the TiO2 surface is oxidized with 18O2 before or after Au deposition, methanol reaction produces H218O below 300 K, indicating that oxygen from titania promotes OH bond scission and is incorporated into desorbing products. XPS experiments provide additional evidence that during methanol reaction on the Au/TiO2 surface, methanol adsorption occurs on TiO2, given that the titania support becomes slightly oxidized after exposure to methanol in the presence of Au clusters. While the role of TiO2 is to dissociate the OH bond and form the reactive methoxy intermediate, the role of the Au sites is to remove hydrogen from the surface as H2, thus preventing the recombination of methoxy and hydrogen to methanol. The decrease in formaldehyde yield with increasing Au coverage above 0.25 ML suggests that reaction occurs at Au–titania interfacial sites; scanning tunneling microscopy images of various Au coverages confirm that the number of interfacial sites at the perimeter of the Au clusters decreases as the Au coverage is increased between 0.25 and 5 ML.  相似文献   

10.
《Solid State Ionics》2006,177(1-2):1-9
Oxygen re-equilibration kinetics, along with the equilibrium conductivity, have been measured on undoped, single-crystal TiO2−δ, by a four-probe d.c. conductivity relaxation technique, against oxygen partial pressure in the range of − 16 < log(PO2/atm)  0 at different temperatures in the range of 1173  T/K  1373. The isothermal conductivity varies as σ  PO2m with m   1/4, − 1/5 and − 1/6 in turn with increasing PO2 up to 1 atm, suggesting a sequential variation of the majority ionic disorder types from Tii to Tii to VO, respectively. Contrary to the conventional knowledge that due to the local (defect) equilibrium postulate there should be one and only one chemical diffusivity or single relaxation time for a binary oxide, the oxygen re-equilibration kinetics has turned out to be twofold with two different relaxation times depending on oxygen activities. This is interpreted as being due to the independent relaxation of each sublattice of TiO2 in an oxygen activity gradient applied, indicating a failure of local equilibrium during oxygen re-equilibration. From the two different relaxation times the chemical diffusion coefficients of component Ti and O are separately evaluated and subsequently, their self-diffusion coefficients. The latter are found to be in a good agreement with the literature data.  相似文献   

11.
V.M. Bermudez 《Surface science》2010,604(7-8):706-712
The adsorption of dimethyl methylphosphonate (DMMP) on the (0 1 0) surface of anatase TiO2, which is isostructural with the (1 0 0), has been studied using density functional theory and two-dimensionally-periodic slab models. The experimentally-observed faceting of this surface has, for the first time, been included in the modeling. The relaxations of bare surfaces both with and without faceting are similar, leading to an atomic-scale roughening due to inward (outward) displacement of fivefold-coordinated Ti5c (sixfold-coordinated T6c) atoms together with outward displacement of threefold-coordinated O3c atoms. Molecular adsorption occurs by formation of a Ti5c?OP dative bond with one or more CH?O2c bonds between CH3 groups and unsaturated, twofold-coordinated (O2c) sites. The energies for molecular adsorption, obtained using the B3LYP functional, are virtually identical (about ?21.0 kcal/mol) for the two surfaces and are also close to those found elsewhere for the rutile (1 1 0) and anatase (1 0 1) surfaces. A possible first step in the dissociative adsorption of DMMP has also been modeled and is found to be thermodynamically favored over molecular adsorption to a degree which depends on faceting.  相似文献   

12.
A highly sensitive chemiluminescence (CL) method for the determination of nitrofurans (NFs) was developed based on the enhancement of CL intensity of luminol–H2O2–NFs system by silver nanoparticles (AgNPs). It was supposed that the oxygen-related radicals of OH and superoxide radical (O2?) could be produced when NFs reacted with H2O2. Furthermore, the enhancement mechanism was originated from the reinforcer of AgNPs, which could catalyze the generation of the OH radical. Then OH radicals reacted with luminol anion and HO2? to form luminol radical (L?) and O2?. The excited state 3-aminophthalate anion was obtained in the reaction of L? and O2?, which was the emitter (luminophor) in the luminol–H2O2 CL reaction system and the maximal emission of the CL spectrum was at 425 nm. The experiments of scavenging oxygen-related radicals were done to confirm these reactive oxygen species participated in the CL reaction. The limits of detection (LOD) (S/N=3) were 8×10?7 g mL?1 for furacilin, 8×10?8 g mL?1 for furantoin, 4×10?8 g mL?1 for furazolidone and 2×10?7 g mL?1 for furaltadone. The proposed method was successfully applied to the determination of NFs in feeds and pharmaceutical samples.  相似文献   

13.
A set of available experimental data on binding energies of Nb 3d5/2 and O 1s core levels in niobates has been observed with using energy difference (O 1sNb 3d5/2) as a robust parameter for compound characterization. An empirical relationship between (O 1sNb 3d5/2) values measured with XPS for Nb5+-niobates and mean chemical bond length L(NbO) has been discussed. A range of (O 1sNb 3d5/2) values possible in Nb5+-niobates has been defined. An energy gap ∼1.4–1.8 eV is found between (O 1sNb 3d5/2) values reasonable for Nb5+ and Nb4+ states in niobates.  相似文献   

14.
The adsorption and reaction behaviors of CF3CH2I on Ag(111) were systematically studied by density functional theory (DFT) calculations. Physical adsorption of CF3CH2I on Ag(111) occurs due to the weak interactions between surface Ag atoms and iodine atom of CF3CH2I; while strong chemisorption occurs for CF3CH2 fragment on Ag(111). Electronic analysis indicates that the singly occupied molecular orbital (SOMO) of CF3CH2 strongly interacts with the surface Ag atoms. It is very interesting to find that the most stable structures of CF3CH2 on Ag(111) locate at the top site, instead of the hollow sites. This might be attributed to the facts that CF3CH2 adsorbed at the top site will maximize the sp3-type hybridization, and the possible weak interaction between the fluorine lone pair electrons of p orbitals for CF3CH2 and surface Ag(111) occurs, which is supported by the charge density difference (CDD) analysis with a low isosurface value. We propose that the charge density difference (CDD) analysis with a high or low isosurface value can be widely applied to analyze the strong or weak electronic interactions upon adsorption. Transition state calculations suggested that the energy barrier of CF bond rupture for CF3CH2I on Ag(111) (1.44 eV) is much higher than that of CI bond breakage for CF3CH2I (0.43 eV); and the activation energy of the CF bond dissociation for CF3CH2(a) is 0.67 eV.  相似文献   

15.
Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20–1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03–0.3 MPa) and liquid temperature (283–333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200 ± 200 K and pressure of about 250 ± 20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures.  相似文献   

16.
Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) confirmed the production of pyrite nanoparticles during 6 h of ball milling with the average size distribution of 20–80 nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5 g/L, SSZ concentration of 10 mg/L and reaction time of 30 min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir–Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl, CO32− and SO42− was investigated on the L-H reaction rate (kr) and adsorption (Ks) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H2O2 and K2S2O8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K2S2O8 and H2O2 increased the SSZ removal efficiency, due to the formation of SO4 and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs.  相似文献   

17.
We discuss an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer epitaxially grown on an InSb (100) substrate by low pressure metal organic chemical vapor deposition (MOCVD). Infrared absorption from the indium–hydrogen (InH) stretching mode at 1754.5 cm? 1 associated with a top most surface of an epitaxial InSb layer was used to compare varying levels of surface coverage with ErSb. Among four samples of varying coverage of ErSb deposition (7.2 to 21.5 monolayers), detected infrared absorption peaks distinct to InH weakened as ErSb surface coverage increased. In the early stage of ErSb deposition, our study suggests that outermost indium atoms in the InSb buffer layer are replaced by Er resulting in increase in absorption associated with the InH mode. Using this simple ex-situ technique, we show that it is possible to calibrate the amount of ErSb deposited atop each individual InSb substrate for depositions of few to tens of monolayers.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(5):1787-1796
Application of Advanced Oxidation Processes (AOP) such as sono, photo and sonophoto catalysis in the purification of polluted water under ambient conditions involve the formation and participation of Reactive Oxygen Species (ROS) like OH, HO2, O2, H2O2 etc. Among these, H2O2 is the most stable and is also a precursor for the reactive free radicals. Current investigations on the ZnO mediated sono, photo and sonophoto catalytic degradation of phenol pollutant in water reveal that H2O2 formed in situ cannot be quantitatively correlated with the degradation of the pollutant. The concentration of H2O2 formed does not increase corresponding to phenol degradation and reaches a plateau or varies in a wave-like fashion (oscillation) with well defined crests and troughs, indicating concurrent formation and decomposition. The concentration at which decomposition overtakes formation or formation overtakes decomposition is sensitive to the reaction conditions. Direct photolysis of H2O2 in the absence of catalyst or the presence of pre-equilibrated (with the adsorption of H2O2) catalyst in the absence of light does not lead to the oscillation. The phenomenon is more pronounced in sonocatalysis, the intensity of oscillation being in the order sonocatalysis > photocatalysis  sonophotocatalysis while the degradation of phenol follows the order sonophotocatalysis > photocatalysis > sonocatalysis > sonolysis > photolysis. In the case of sonocatalysis, the oscillation continues for some more time after discontinuing the US irradiation indicating that the reactive free radicals as well as the trapped electrons and holes which interact with H2O2 have longer life time (memory effect).  相似文献   

19.
The composition and thermodynamic stability of the (110) surface of Sn1 - xTixO2 rutile solid solutions was investigated as a function of Ti-distribution and content up to the formation of a full TiO2 surface monolayer. The bulk and (110) surface properties of Sn1 - xTixO2 were compared to that of the pure SnO2 and TiO2 crystal. A large supercell of 720 atoms and a localized basis set based on the Gaussian and plane wave scheme allowed the investigation of very low Ti-content and symmetry. For the bulk, optimization of the crystal structure confirmed that up to a Ti-content of 3.3 at.%, the lattice parameters (a, c) of SnO2 do not change. Increasing further the Ti-content decreased both lattice parameters down to those of TiO2. The surface energy of these solid solutions did not change for Ti-substitution in the bulk of up to 20 at.%. In contrast, substitution in the surface layer rapidly decreased the surface energy from 0.99 to 0.74 J/m2 with increasing Ti-content from 0 to 20 at.%. As a result, systems with Ti atoms distributed in the surface (surface enrichment) had always lower energies and thus were thermodynamically more favorable than those with Ti homogeneously distributed in the bulk. This was attributed to the lower energy necessary to break the TiO bonds than SnO bonds in the surface layer. In fact, distributing the Ti atoms homogeneously or segregated in the (110) surface led to the same surface energy indicating that restructuring of the surface bond lengths has minimal impact on thermodynamic stability of these rutile systems. As a result, a first theoretical prediction of the composition of Sn1 - xTixO2 solid solutions is proposed.  相似文献   

20.
Two nanoparticles of cadmium(II) coordination polymers (CPs) formulated as [Cd(L)(DCTP)]n (1) and [Cd(L)2(DCTP)·2H2O]n (2) (L = 1,2-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2DCTP = 2,5-dichloroterephthalic acid) were prepared by the sonochemical approach in different solvents and characterized by elemental analysis, IR spectra, scanning electron microscopy (SEM), and powder X-ray diffraction. Structural determination reveals that CP 1 displays a 2D four-connected sql net layer, Whilst CP 2 exhibits a 1D “V”-like chain structure. Luminescence properties, thermal behavior, and photocatalytic activities of the nanoparticles of CPs 1 and 2 on the degradation of methylene blue were investigated. The photocatalytic mechanism is carried out by introducing t-butyl alcohol (TBA) as a widely used OH scavenger. Furthermore, the influence of solvents, reaction time, and ultrasound irradiation temperature on the morphology and size of the nanostructure CPs 1 and 2 were investigated. The results indicated that an increase of time and ultrasound irradiation temperature decreased the nanostructured size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号