首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Photodynamic therapy (PDT) is a combination of light with a lesion-localizing photosensitizer or its precursor to destroy the lesion tissue. PDT has recently become an established modality for several malignant and non-malignant conditions, but it can be further improved through a better understanding of the determinants affecting its therapeutic efficiency. In the present investigation, protoporphyrin IX (PpIX), an efficient photosensitizer either endogenously induced by 5-aminolevulinic acid (ALA) or exogenously administered, was used to correlate its subcellular localization pattern with photodynamic efficiency of human oesophageal carcinoma (KYSE-450, KYSE-70) and normal (Het-1A) cell lines. By means of fluorescence microscopy ALA-induced PpIX was initially localized in the mitochondria, whereas exogenous PpIX was mainly distributed in cell membranes. At a similar amount of cellular PpIX PDT with ALA was significantly more efficient than photodynamic treatment with exogenous PpIX at killing all the 3 cell lines. Measurements of mitochondrial membrane potential and intracellular ATP content, and electron microscopy showed that the mitochondria were initially targeted by ALA-PDT, consistent with intracellular localization pattern of ALA-induced endogenous PpIX. This indicates that subcellular localization pattern of PpIX is an important determinant for its PDT efficiency in the 3 cell lines. Our finding suggests that future new photosensitizers with mitochondrially localizing properties may be designed for effective PDT.  相似文献   

2.
Photodynamic therapy (PDT) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. Maximizing the accumulation of the photosensitizer protoporphyrin IX (PpIX) within different cell types would be clinically useful. Dermatological PpIX-induced PDT regimes produce good clinical outcomes but this currently only applies when the lesion remains superficial. Also, as an adjuvant therapy for the treatment of primary brain tumors, fluorescence guided resection (FGR) and PDT can be used to highlight and destroy tumor cells unreachable by surgical resection. By employing iron chelators PpIX accumulation can be enhanced. Two iron-chelating agents, 1,2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) and dexrazoxane, were individually combined with the porphyrin precursors aminolevulinic acid (ALA), methyl aminolevulinate (MAL) and hexyl aminolevulinate (HAL). Efficacies of the iron-chelating agents were compared by recording the PpIX fluorescence in human squamous epithelial carcinoma cells (A431) and human glioma cells (U-87 MG) every hour for up to 6 h. Coincubation of ALA/MAL/HAL with CP94 resulted in a greater accumulation of PpIX compared to that produced by coincubation of these congeners with dexrazoxane. Therefore the clinical employment of iron chelation, particularly with CP94 could potentially increase and/or accelerate the accumulation of ALA/MAL/HAL-induced PpIX for PDT or FGR.  相似文献   

3.
The tissue photosensitizer protoporphyrin IX (PpIX) is an immediate precursor of heme in the biosynthetic pathway for heme. In certain types of cells and tissues, the rate of synthesis of PpIX is determined by the rate of synthesis of 5-aminolevulinic acid (ALA), which in turn is regulated via a feedback control mechanism governed by the concentration of free heme. The presence of exogenous ALA bypasses the feedback control, and thus may induce the intracellular accumulation of photosensitizing concentrations of PpIX. However, this occurs only in certain types of cells and tissues. The resulting tissue-specific photosensitization provides a basis for using ALA-induced PpIX for photodynamic therapy. The topical application of ALA to certain malignant and non-malignant lesions of the skin can induce a clinically useful degree of lesion-specific photosensitization. Superficial basal cell carcinomas showed a complete response rate of approximately 79% following a single exposure to light. Recent preclinical studies in experimental animals and human volunteers indicate that ALA can induce a localized tissue-specific photosensitization if administered by intradermal injection. A generalized but still quite tissue-specific photosensitization may be induced if ALA is administered by either subcutaneous or intraperitoneal injection or by mouth. This opens the possibility of using ALA-induced PpIX to treat tumors that are too thick or that lie too deep to be accessible to either topical or locally injected ALA.  相似文献   

4.
Photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) may have a role in the treatment of dysplastic Barrett's esophagus. Before ALA-induced PDT can be used clinically, optimum treatment parameters must be established. In this study of 35 patients, the issues of drug dosage, time interval between drug and light delivery and side effects of oral ALA administration are addressed. Spectrofluorometric analysis of tissue samples demonstrates that oral ALA administration induces porphyrin accumulation in esophageal tissues, with maximum levels at 4-6 h. High-performance liquid chromatography confirms the identity of this porphyrin as PpIX, and fluorescence microscopy analysis demonstrates that it preferentially accumulates in the esophageal mucosa, rather than in the underlying stroma. Side effects of ALA administration included malaise, headache, photosensitivity, alopecia, transient derangement of liver function, nausea and vomiting. Fewer side effects and less hepatic toxicity was seen with 30 mg/kg than 50 mg/kg ALA. In conclusion, oral ALA administration induces preferential PpIX accumulation in the esophageal mucosa, with peak PpIX fluorescence noted at 4 h and minimal systemic toxicity at a dose of 30 mg/kg.  相似文献   

5.
Photodynamic therapy (PDT) with the pro-drugs 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. To potentially increase accumulation of the photosensitizer, protoporphyrin IX (PpIX), within tumor cells an iron chelator can be employed. This study analyzed the effects of ALA/MAL-induced PDT combined with the iron chelator 1, 2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) on the accumulation of PpIX in human glioma cells in vitro. Cells were incubated for 0, 3 and 6 h with various concentrations of ALA/MAL with or without CP94 and the resulting accumulations of PpIX, which naturally fluoresces, were quantified prior to and following light irradiation. In addition, counts of viable cells were recorded. The use of CP94 in combination with ALA/MAL produced significant enhancements of PpIX fluorescence in human glioma cells. At the highest concentrations of each prodrug, CP94 enhanced PpIX fluorescence significantly at 3 h for ALA and by more than 50% at 6 h for MAL. Cells subsequently treated with ALA/MAL-induced PDT in combination with CP94 produced the greatest cytotoxicity. It is therefore concluded that with further study CP94 may be a useful adjuvant to photodiagnosis and/or PpIX-induced PDT treatment of glioma.  相似文献   

6.
Delta-aminolevulinic acid-photodynamic therapy (ALA-PDT) has emerged as a useful technique in the treatment of superficial basal cell carcinoma, actinic keratosis, squamous cell carcinoma and tumors of other organs. Earlier reports mention that there is reappearance of protoporphyrin IX (PpIX) after photoirradiation of tumors. This property of reappearance of PpIX is being utilized to treat nodular tumors by fractionated light dose delivery. However, there is still no unanimously accepted reason for this reappearance phenomenon and the rate of resynthesis after PDT. On account of this, studies are carried out on the estimation of the pharmacokinetics of the ALA-induced PpIX in mice tumor models and the surrounding normal tissues before and after PDT. Further, a mathematical model based on a multiple compartment system is proposed to estimate the rate parameter for the diffusion of PpIX from the surrounding normal tissues into the tumor tissue (km) caused by photobleaching during PDT with irradiating fluences of 36.0 and 57.6 J/cm2. The km value at two different fluences, 36.0 and 57.6 J/cm2, are estimated as 3.0636+/-0.7083 h(-1) and 6.9231+/-2.17651 h(-1), respectively. Further, the rate parameter for the cleavage and efflux of ALA (k1) and the rate parameter for the evasion of PpIX from the tumor tissues after PDT (kt) were also estimated by fitting the experimental data to the developed mathematical model. The statistical significance of the estimated parameters was determined using Student's t-test. The experimental results and the rate parameters obtained using the proposed compartment model suggest that in addition to the earlier reported reasons, the invasion or diffusion of PpIX from the surrounding tissues to the tumor tissues after photoirradiation might also contribute to the reappearance of PpIX after PDT.  相似文献   

7.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

8.
In recent years, 5-aminolevulinic acid (ALA) has become a widespread agent for photodynamic therapy (PDT). In nucleated cells, ALA is converted into the endogenous photosensitizer protoporphyrin IX (PpIX). A major drawback of ALA is its low bioavailability. As a result, high doses of ALA must be administered in order to reach clinically relevant levels of PpIX. Moreover, only superficially located lesions can be treated as a result of the poor penetration of ALA into tissues. A possible solution for this problem may be provided by the prod rug concept. In the present study, prodrugs of ALA have been synthesized. These ALA prodrugs are shown to result in higher PpIX levels in cells than does ALA itself. Of a range of ester prodrugs of ALA, the ALA-pentyl ester elicits the highest fluorescence. Further-more, the enzymatic conversion of the derivatives into ALA and PpIX has been studied in lysed cells. Under these circumstances, the esters with the shorter alkyl chains induce the highest fluorescence. The alcohols that arise as side products from enzymatic conversion of the prodrugs are shown to have no influence on the experiments.  相似文献   

9.
Our novel approach was to compare the pharmacokinetics of 5-aminolevulinic acid (ALA), ALA-n-butyl and ALA-n-hexylester induced protoporphyrin IX (PpIX), together with the phototoxicity after photodynamic therapy (PDT) in human skin in vivo, using iontophoresis as a dose-control system. A series of four increasing doses of each compound was iontophoresed into healthy skin of 10 volunteers. The kinetics of PpIX metabolism (n = 4) and the response to PDT (n = 6) performed 5 h after iontophoresis, were assessed by surface PpIX fluorescence and post-irradiation erythema. Whilst ALA-induced PpIX peaked at 7.5 h, highest PpIX fluorescence induced by ALA-n-hexylester was observed at 3-6 h and no clear peak was seen with ALA-n-butylester. With ALA-n-hexylester, more PpIX was formed after 3 (P < 0.05) and 4.5 h, than with ALA or ALA-n-butylester. All compounds showed a linear correlation between logarithm of dose and PpIX fluorescence/phototoxicity at 5 h, with R-values ranging from 0.87 to 1. In addition, the ALA-n-hexylester showed the tendency to cause greater erythema than ALA and ALA-n-butylester. Fluorescence microscopy (n = 2) showed similar PpIX distributions and penetration depths for the three drugs, although both ALA esters led to a more homogeneous PpIX localization. Hence, ALA-n-hexylester appears to have slightly more favorable characteristics for PDT than ALA or ALA-n-butylester.  相似文献   

10.
Abstract— The subcellular and, specifically, mitochondrial localization of the photodynamic sensitizers Photofrin and aminolevulinic acid (ALA)-induced protoporphyrin-IX (PpIX) has been investigated in vitro in radiation-induced fibrosarcoma (RIF) tumor cells. Comparisons were made of parental RIF-1 cells and cells (RIF-8A) in which resistance to Photofrin-mediated photodynamic therapy (PDT) had been induced. The effect on the uptake kinetics of Photofrin of coincubation with one of the mitochondria-specific probes 10N-Nonyl acridine orange (NAO) or rhodamine-123 (Rh-123) and vice versa was examined. The subcellular colocalization of Photofrin and PpIX with Rh-123 was determined by double-label confocal fluorescence microscopy. Clonogenic cell survival after ALA-mediated PDT was determined in RIF-1 and RIF-8A cells to investigate cross-resistance with Photofrin-mediated PDT. At long (18 h) Photofrin incubation times, stronger colocalization of Photofrin and Rh-123 was seen in RIF-1 than in RIF-8A cells. Differences between RIF-1 and RIF-8A in the competitive mitochondrial binding of NAO or Rh-123 with Photofrin suggest that the inner mitochondrial membrane is a significant Photofrin binding site. The differences in this binding may account for the PDT resistance in RIF-8A cells. With ALA, the peak accumulations of PpIX occurred at 5 h for both cells, and followed a diffuse cytoplasmic distribution compared to mitochondrial localization at 1 h ALA incubation. There was rapid efflux of PpIX from both RIF-1 and RIF-8A. As with Photofrin, ALA-induced PpIX exhibited weaker mitochondrial localization in RIF-8A than in RIF-1 cells. Clonogenic survival demonstrated cross-resistance to incubation in PpIX but not to ALA-induced PpIX, implying differences in mitochondrial localization and/or binding, depending on the source of the PpIX within the cells.  相似文献   

11.
Results are reported on the cellular effects and the sensitivity of cultured tumor epithelial cells (TEC) derived from human ovarian cystadenocarcinoma and human umbilical vein-derived endothelial cells (HUVEC) to exogenous 5-aminolaevulinic acid (ALA) and ALA-induced photodynamic therapy (PDT). Cellular alterations and PDT efficiency were evaluated using colorimetric thiazolyl blue (MTT) assay, trypan blue exclusion assay, electron microscopy, and gel electrophoresis. ALA-induced protoporphyrin IX (PpIX) accumulation in TEC was associated with a concentration and time-dependent significant decrease in mitochondrial activity, increase in cell membrane permeability, and dark toxicity. Maximum PpIX loaded TEC demonstrated a high sensitivity to PDT. Neither cellular alterations nor PDT effects were observed in HUVEC under identical experimental conditions. These results indicate a potential clinical value for the use of ALA-mediated PDT to treat minimal residual disease in mucinous ovarian carcinoma. In addition, the ALA-induced PpIX cytotoxicity may be exported to a new chemotherapeutic regimen via a conventionally viewed photochemotherapeutic agent.  相似文献   

12.
Photodynamic therapy (PDT) has been considered as a potential therapy for superficial bladder carcinomas. Cutaneous photosensitivity and reduction of bladder capacity are the two well-known complications following systemic administration of the commonly used photosensitizer, Photofrin II® (PII). The objective of the present study was to evaluate whether intravesical. (i.b.) instillation of photosensitizers for PDT of bladder cancer might be a more suitable treatment method. Female Fischer rats were utilized to develop orthotopic and heterotopic bladder tumor models. Rats bearing orthotopic bladder tumors were treated either intravesically or intravenously with graded doses of 5-aminolevulinic acid (ALA) or PII. Normal rats received the same doses of ALA or PII. As well, rats bearing heterotopic tumor were studied for comparison. The biodistribution times (times allowed for tissue uptake and bioconversion following drug administration) were 2, 4 or 6 h. Porphyrin fluorescence intensities within tumor, urothelium, submucosa, bladder muscularis and abdominal muscle were quantitated by confocal laser scanning microscopy. Following intravenous (i.v.) injection of ALA, tumor protoporphyrin IX (PpIX) levels peaked at 4 h and diminished by 6 h. The PpIX ratios of tumor-to-bladder mucosa, submucosa and muscle layers were 3:1, 5:1 and 8:1, respectively, 4 h following 1000 mg/kg ALA injection. After ALA instillation, the optimal biodistribution time appeared to be 4 h. Bladder instillation provided comparable tumor labeling with the i.v. route, but lost selectivity of PpIX accumulation between tumor and normal urothelium. The PpIX ratio of tumor-to-bladder muscularis was 5:1. After i.b. instillation of PII, porphyrin fluorescence was detected only within tumor and urothelium, while porphyrin fluorescence was mainly located in bladder submucosa following i.v. injection. Intravesical administration of ALA or PII might be feasible for PDT of superficial bladder cancers.  相似文献   

13.
Photodynamic therapy (PDT) is a relatively new approach to the treatment of neoplasms which involves the use of photoactivatable compounds to selectively destroy tumors. 5-Aminolevulinic acid (ALA) is an endogenous substance which is converted to protoporphyrin IX (PpIX) in the synthetic pathway to heme. PpIX is a very effective photosensitizer. The goal of this study was to evaluate the effect of PDT using topical ALA on normal guinea pig (g.p.) skin and g.p. skin in which the stratum corneum was removed by being tape-stripped (TS). Evaluation consisted of gross examination, PpIX fluorescence detection, reflectance spectroscopy, and histology. There was no effect from the application of light or ALA alone. Normal non-TS g.p. skin treated with ALA and light was unaffected unless high light and ALA doses were used. Skin from which the stratum corneum was removed was highly sensitive to treatment with ALA and light: 24 h after treatment, the epidermis showed full thickness necrosis, followed by complete repair within 7 d. Time-dependent fluorescence excitation and emission spectra were determined to characterize the chromophore and to demonstrate a build-up of the porphyrin in the skin. These data support the view that PDT with topical ALA is a promising approach for the treatment of epidermal cutaneous disorders.  相似文献   

14.
Endogenously generated protoporphyrin IX (PpIX) from exogenous ALA can be an effective photosensitizer. PpIX accumulation is inversely dependent on available intracellular iron, which is required for the conversion of PpIX to heme. Iron also is necessary for cell replication. Since iron can be toxic, intracellular iron levels are tightly controlled. Activated and proliferating cells respond to the demand for intracellular iron by upregulating membrane expression of the transferrin receptor (CD71) which is needed for iron uptake. We predicted that activated lymphocytes (CD71 +) would preferentially accumulate PpIX because of their lower intracellular iron levels and because of competition for iron between ALA-induced heme production and cellular growth processes. Thus, the CD71+ cells could serve as PDT targets. Stimulation of human peripheral blood lymphocytes (PBL) with the mitogens, phytohemagglutinin A, concanavalin A and pokeweed prior to incubation with ALA results in PpIX accumulation correlating with level of activation. Activated lymphocytes expressing high levels of surface CD71 transferrin receptors generated more PpIX than those with low CD71 expression. Incubating activated cells in transferrin depleted medium (thereby decreasing the iron availability) further increased PpIX levels. Malignant, CD71 + T lymphocytes from a patient with cutaneous T-cell lymphoma (CTCL)/Sezary syndrome also accumulated increased PpIX levels in comparison to norma] lymphocytes. PDT of activated lymphocytes and Sezary cells after ALA incubation demonstrated preferential killing compared to normal, unstimulated PBL. These findings suggest a possible mechanism for the selectivity of ALA PDT for activated CD71+ cells. They also indicate a clinical use for ALA-PDT in therapy directed towards the malignant lymphocytes in leukemias and lymphomas, and as animmunomodulatory agent.  相似文献   

15.
Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate (1) multispectral fluorescent imaging of ultraviolet light (UV)‐induced cancer and precancer in a mouse model of SCC and (2) multispectral imaging and probe‐based fluorescence detection as a tool to study vitamin D (VD) effects on aminolevulinic acid (ALA)‐induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24‐week UV carcinogenesis protocol. Hot spots of PpIX fluorescence were detectable by multispectral imaging beginning at 14 weeks of UV exposure. Many hot spots disappeared after cessation of UV at week 20, but others persisted or became visible after week 20, and corresponded to tumors that eventually became visible by eye. In SCC‐bearing mice pretreated with topical VD before ALA application, our optical techniques confirmed that VD preconditioning induces a tumor‐selective increase in PpIX levels. Fluorescence‐based optical imaging of PpIX is a promising tool for detecting early SCC lesions of the skin. Pretreatment with VD can increase the ability to detect early tumors, providing a potential new way to improve efficacy of ALA‐PDT.  相似文献   

16.
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron‐dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA‐PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA‐PpIX fluorescence in tumor cells with lower FECH activity (MDA‐MB‐231, Hs 578T) than in tumor cells with higher FECH activity (MDA‐MB‐453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.  相似文献   

17.
The aim of this study is to modify the chick chorioallantoic membrane (CAM) model into a whole-animal tumor model for photodynamic therapy (PDT). By using intraperitoneal (i.p.) photosensitizer injection of the chick embryo, use of the CAM for PDT has been extended to include systemic delivery as well as topical application of photosensitizers. The model has been tested for its capability to mimic an animal tumor model and to serve for PDT studies by measuring drug fluorescence and PDT-induced effects. Three second-generation photosensitizers have been tested for their ability to produce photodynamic response in the chick embryo/CAM system when delivered by i.p. injection: 5-aminolevulinic acid (ALA), benzoporphyrin derivative monoacid ring A (BPD-MA), and Lutetium-texaphyrin (Lu-Tex). Exposure of the CAM vasculature to the appropriate laser light results in light-dose-dependent vascular damage with all three compounds. Localization of ALA following i.p. injections in embryos, whose CAMs have been implanted with rat ovarian cancer cells to produce nodules, is determined in real time by fluorescence of the photoactive metabolite protoporphyrin IX (PpIX). Dose-dependent fluorescence in the normal CAM vasculature and the tumor implants confirms the uptake of ALA from the peritoneum, systemic circulation of the drug, and its conversion to PpIX.  相似文献   

18.
To verify if photodynamic therapy (PDT) could overcome multidrug resistance (MDR) when it it applied to eradicate minimal residual disease in patients with leukemia, we investigated the fluorescence kinetics of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) and the effect of subsequent photodynamic therapy on MDR leukemia cells, which express P-glycoprotein (P-gp), as well as on their parent cells. Evaluation of PpIX accumulation by flow cytometry showed that PpIX accumulated at higher levels in mdr-1 gene-transduced MDR cells (NB4/MDR) and at lower levels in doxorubicin-induced MDR cells (NOMO-1/ADR) than in their parent cells. A P-gp inhibitor could not increase PpIX accumulation. Measurement of extracellular PpIX concentration by fluorescence spectrometry showed that P-gp did not mediate the fluorescence kinetics of ALA-induced PpIX production. Assessment of ferrochelatase activity using high-performance liquid chromatography indicated that PpIX accumulation in drug-induced MDR cells was probably regulated by this enzyme. Assessment of phototoxicity of PDT using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that PDT was effective in NB4, NB4/MDR, NOMO-1 and NOMO-1/ADR cells, which accumulated high levels of PpIX, but not effective in K562 and K562/ADR cell lines, which accumulated relatively low levels of PpIX. These findings demonstrate that P-gp does not mediate the ALA-fluorescence kinetics, and multidrug resistant leukemia cells do not have cross-resistance to ALA-PDT.  相似文献   

19.
Aminolevulinic acid photodynamic therapy (ALA-PDT) is a cancer therapy that combines the selective accumulation of a photosensitizer in tumor tissue with visible light (and tissue oxygen) to produce reactive oxygen species. This results in cellular damage and ablation of tumor tissue. The use of iron chelators in combination with ALA has the potential to increase the accumulation of the photosensitizer protoporphyrin IX (PpIX) by reducing its bioconversion to heme. This study compares directly for the first time the effects of the novel hydroxypyridinone iron chelating agent CP94 and the more clinically established iron chelator desferrioxamine (DFO) on the enhancement of ALA and methyl-aminolevulinate (MAL)-induced PpIX accumulations in cultured human cells. Cultured human cells were incubated with a combination of ALA, MAL, CP94 and DFO concentrations; the resulting PpIX accumulations being quantified fluorometrically. The use of iron chelators in combination with ALA or MAL was shown to significantly increase the amount of PpIX accumulating in the fetal lung fibroblasts and epidermal carcinoma cells; while minimal enhancement was observed in the normal skin cells investigated (fibroblasts and keratinocytes). Where enhancement was observed CP94 was shown to be significantly superior to DFO in the enhancement of PpIX accumulation.  相似文献   

20.
Protoporphyrin IX (PpIX) is used as a fluorescence marker and photosensitizing agent in photodynamic therapy (PDT). A temporary increase of PpIX in tissues can be obtained by administration of 5-aminolevulinic acid (ALA). Lipophilicity is one of the key parameters defining the bioavailability of a topically applied drug. In the present work, octanol-water partition coefficients of ALA and several of its esters have been determined to obtain a parameter related to their lipophilicity. The influence of parameters such as lipophilicity, concentration, time, and pH value on PpIX formation induced by ALA and its esters is then investigated in human cell lines originating from the lung and bladder. ALA esters are found to be more lipophilic than the free acid. The optimal concentration (c(opt), precursor concentration at which maximal PpIX accumulation is observed) is then measured for each precursor. Long-chained ALA esters are found to decrease the c(opt) value by up to two orders of magnitude as compared to ALA. The reduction of PpIX formation observed at higher concentrations than c(opt) is correlated to reduced cell viability as determined by measuring the mitochondrial activity. Under optimal conditions, the PpIX formation rate induced by the longer-chained esters is higher than that of ALA or the shorter-chained esters. A biphasic pH dependence on PpIX generation is observed for ALA and its derivatives. Maximal PpIX formation is measured under physiological conditions (pH 7.0-7.6), indicating that further enhancement of intracellular PpIX content may be achieved by adjusting the pharmaceutical formulation of ALA or its derivatives to these pH levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号