首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenoxyl radicals of eugenol (EgOH) and isoeugenol (iEgOH) were generated by the specific one‐electron oxidant N3· using pulse radiolysis technique, and were characterized by their absorption spectra, decay and formation kinetics, and one‐electron reduction potential (E71) values. Reactivities of eugenol phenoxyl radical with the biologically important molecule, trolox C (analogue of vitamin E, α‐tocopheral), were determined. Reactions of OH with these phenols were studied at different pHs and suitable mechanisms for these reactions were suggested. Scavenging abilities of the phenols toward highly damaging Br·, NO2·, and CCl3O2· radicals were evaluated. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 17–23, 2000  相似文献   

2.
The reactions of e aq, H-atoms, OH radicals and some one electron oxidants and reductants were studied with dithio-oxamide (DTO) in aqueous solutions using pulse radiolysis technique. The transient species formed by the reaction of e aq with DTO at pH 6.8 has an absorption band with λ max at 380 nm and is reducing in nature. H-atom reaction with DTO at pH 6.8 also produced the same transient species. The semi-reduced species was found to be neutral indicating that the electron adduct gets protonated quickly. However at pH 1, the species produced by H-atom reaction had a different spectrum with λ max at 360 and 520 nm. Reaction of acetone ketyl radicals and CO2 radicals with DTO at pH 6.8 gave transient spectra which were identical to that obtained by e aq reaction. However at pH 1, the spectrum obtained by the reaction of acetone ketyl radicals with DTO was similar to that obtained by H-atom reaction at that pH. The transient species formed by OH radical reaction with DTO in the pH range 1–9.2 also has two absorption maxima at 360 and 520 nm. This spectrum was identical with the spectrum obtained by H-atom reaction at pH 1. This means that all these radicals viz. OH, H-atom and (CH3)2COH radicals react with DTO at pH 1 by H-abstraction mechanism. The transient species produced was found to be sensitive to the presence of oxygen. One-electron oxidizing radicals such as Br2 −· and SO4 −· radicals reacted with DTO at neutral pH to give the same species as produced by OH radical reaction having absorption maxima at 360 to 520 nm. At acidic pHs, only Br2 −· and Cl2 −· radicals were able to oxidize DTO to give the same species as produced by OH radical reaction. The semioxidized species is a resonance stabilized species with the electron delocalized over the-N-C-S bond. This species was found to be neutral and non-oxidizing in nature.  相似文献   

3.
Pulse radiolysis technique has been employed to study the reaction of different oxidizing and reducing radicals with mangiferin. The reaction of OH radical showed the formation of transient species absorbing in 380–390 and 470–480 nm region. The reaction with specific one-electron oxidants (N3, CCl3O2) also showed the formation of similar transient absorption bands and is assigned to phenoxyl radicals. The pKa values of the transient species have been determined to be 6.3 and 11.9. One-electron oxidation potential of mangiferin at pH 9 has been found to be 0.62 V vs. NHE. The reaction of eaq showed the formation of transient species with λmax at 340 nm, which is assigned to the ketyl anion radical formed on addition of eaq at carbonyl site. Reactions of one-electron oxidised mangiferin radicals with ascorbic acid have also been studied.  相似文献   

4.
The reactions of eaq, OH·, CO2·, and N3· radicals with some novel homo nuclear and hetero nuclear peroxo peptide complexes viz: copper peroxo glycylglycine, [Cu(O2)(H2L)2]; molybdenum oxoperoxo glycylglycine, [Mo(O)(O2)2(H2L)2]; Cu,Mo oxoperoxo glycylglycine [CuMo(O)(O2)(L)2] and Cu,Mo, oxo glycylglycine, [CuMo(O)2(L)2] (H2L=glycyl glycine) in aqueous solutions were investigated by pulse radiolysis. Three types of reactions were observed: (1) reduction of Cu(II) to Cu(I) by eaq and CO2·, (2) oxidation of Cu(II) to Cu(III) by N3·, and (3) formation of a radical on H abstraction from the ligand by OH· radical. Rate constants were reported for formation and decomposition of all intermediates. In case of one electron reduced complexes of hetero atoms, CuMo(O)2L2 and CuMo(O)(O2)L2, prepared via the reduction of the corresponding complexes by eaq, formation of a new dimer radical anion complex was observed. It is also noteworthy to mention the possibility of the effect of peroxo ligand on intermediate steps during the formation of Cu clusters. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 159–168, 1999  相似文献   

5.
Reactions of peroxyl radicals and peroxynitrite with o-vanillin (2-hydroxy 3-methoxy benzaldehyde), a positional isomer of the well-known dietary compound vanillin, were studied to understand the mechanisms of its free radical scavenging action. Trichloromethylperoxyl radicals (CCl3O 2 · ) were used as model peroxyl radicals and their reactions with o-vanillin were studied using nanosecond pulse radiolysis technique with absorption detection. The reaction produced a transient with a bimolecular rate constant of approx. 105 M−1s−1, having absorption in the 400–500 nm region with a maximum at 450 nm. This spectrum looked significantly different from that of phenoxyl radicals of o-vanillin produced by the one-electron oxidation by azide radicals. The spectra and decay kinetics suggest that peroxyl radical reacts with o-vanillin mainly by forming a radical adduct. Peroxynitrite reactions with o-vanillin at pH 6.8 were studied using a stopped-flow spectrophotometer. o-Vanillin reacts with peroxynitrite with a bimolecular rate constant of 3 × 103 M−1s−1. The reaction produced an intermediate having absorption in the wavelength region of 300–500 nm with a absorption maximum at 420 nm, that subsequently decayed in 20 s with a first-order decay constant of 0.09 s−1. The studies indicate that o-vanillin is a very efficient scavenger of peroxynitrite, but not a very good scavenger of peroxyl radical. The reactions take place through the aldehyde and the phenolic OH group and are significantly different from other phenolic compounds.  相似文献   

6.
Unsaturated 1,6‐dicarbonyls like 2,4‐hexadienedial are ring opening products in the OH initiated photo‐oxidation of aromatic hydrocarbons. In the present study, the photolysis of E,Z‐ and E,E‐2,4‐hexadienedial has been investigated under natural sunlight conditions in a large volume outdoor reaction chamber. In the case of the E,Z‐isomer, an extremely rapid isomerization into the E,E‐form was observed. The photoisomerization frequency, relative to that of NO2, was found to be J(E,Z‐2,4‐hexadienedial)/J(NO2) = (0.148 ± 0.012). A more complex photolysis behavior was observed for E,E‐2,4‐hexadienedial. Here, a fast equilibrium preceded a comparably slow photolysis. For the equilibrium reaction, relative frequencies of J(E,E‐2,4‐hexadienedial → EQUI)/J(NO2) = (0.113 ± 0.009) and J(EQUI → E,E‐2,4‐hexadienedial)/J(NO2) = (0.192 ± 0.016) were obtained, giving an equilibrium constant of K = (0.59 ± 0.07). For the photolysis frequencies, ratios of J(E,E‐2,4‐hexadienedial → products)/J(NO2) = J(EQUI → products)/J(NO2) = (1.22 ± 0.45)·10−2 were determined. Qualitative aerosol measurements during the experiments showed that the photolysis of 2,4‐hexadienedials is a source of secondary organic aerosol. In addition to the photolysis study, OH radical reaction rate constants were determined, values of (7.4 ± 1.9)·10−11 and (7.6 ± 0.8)·10−11 cm3 s−1 were obtained for E,Z‐ and E,E‐2,4‐hexadienedial, respectively. The results indicate that the dominant fate of E,Z‐2,4‐hexadienedial in the atmosphere will be photoisomerization, while for E,E‐2,4‐hexadienedial, both photolysis and OH radical reaction will be important sinks. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 689–697, 1999  相似文献   

7.
At near neutral pH (approx. 5.5), the OH-adduct of chlorogenic acid (CGA), formed on pulse radiolysis of N2O-saturated aqueous CGA solutions (λ max = 400 and 450 nm) with k = 9 × 109 dm3 mol−1 s−1, rapidly eliminates water (k = 1 × 103 s−1) to give a resonance-stabilized phenoxyl type of radical. Oxygen rapidly adds to the OH-adduct of CGA (pH 5.5) to form a peroxyl type of radical (k = 6 × 107 dm3 mol−1 s−1). At pH 10.5, where both the hydroxyl groups of CGA are deprotonated, the rate of reaction of · OH radicals with CGA was essentially the same as at pH 5.5, although there was a marked shift in the absorption maximum to approx. 500 nm. The CGA phenoxyl radical formed with more specific one-electron oxidants, viz., Br 2 ·− and N 3 · radicals show an absorption maximum at 385 and 500 nm, k ranging from 1–5.5 × 109 dm3 mol−1 s−1. Reactions of other one-electron oxidants, viz., NO 2 · , NO· and CCl3OO· radicals, are also discussed. Repair rates of thymidine, cytidine and guanosine radicals generated pulse radiolytically at pH 9.5 by CGA are in the range of (0.7–3) × 109 dm3 mol−1 s−1.  相似文献   

8.
Hydroxyl radicals were generated radiolytically in N2O-saturated aqueous solutions of the aminoglycoside antibiotic, gentamycin. Using the pulse radiolysis technique, the rate constant of OH radicals with gentamycin determined was 1.2·109 dm3·mol−1·s−1. Upon.OH attack a transient species with an absorption maximum at 270 nm is observed which decays by second-order kinetics within the solute concentration range of 3.2·10−5 to 1·10−3mol·dm−3. Transient species undergoes transformation to a permanent product absorbing between 260 and 340 nm with maximum absorption at 300 nm. Rate constant of the reaction of bimolecular decay of gentamycin radicals, k (Gen.+Gen.) was found to be ≈ 1.4·107 dm3·mol−1·s−1.  相似文献   

9.
The mechanism of the OH‐initiated oxidation of isoprene in the presence of NO and O2 has been investigated using a discharge‐flow system at 298 K and 2 torr total pressure. OH radical concentration profiles were measured using laser‐induced fluorescence as a function of reaction time. The rate constant for the reaction of OH + isoprene was measured to be (1.10 ± 0.05) × 10−10 cm3 mol−1 s−1. In the presence of NO and O2, regeneration of OH radicals by the reaction of isoprene‐based peroxy radicals with NO was measured and compared to simulations of the kinetics of this system. The results of these experiments are consistent with an overall rate constant of 9 × 10−12 cm3 mol−1 mol−1 (with an uncertainty factor of 2) for the reaction of isoprene‐based hydroxyalkyl peroxy radicals with NO. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 637–643, 1999  相似文献   

10.
Crystals of 1‐(diaminomethylene)thiouron‐1‐ium chloride, C2H7N4S+·Cl, 1‐(diaminomethylene)thiouron‐1‐ium bromide, C2H7N4S+·Br, and 1‐(diaminomethylene)thiouron‐1‐ium iodide, C2H7N4S+·I, are built up from the nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective halogenide anion. The conformation of the 1‐(diaminomethylene)thiouron‐1‐ium cation in each case is twisted. Both arms of the cation are planar and rotated in opposite directions around the C—N bonds involving the central N atom. The dihedral angles describing the twisted conformation are 22.9 (1), 15.2 (1) and 4.2 (1)° in the chloride, bromide and iodide salts, respectively. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into a supramolecular network. The aim of the investigation is to study the influence of the size of the ionic radii of the Cl, Br and I ions on the dimensionality of the hydrogen‐bonding network of the 1‐(diaminomethylene)thiouron‐1‐ium cation. The 1‐(diaminomethylene)thiouron‐1‐ium system should be of use in crystal engineering to form multidimensional networks.  相似文献   

11.
Comparison of the structures of strychninium N‐phthaloyl‐β‐alaninate N‐phthaloyl‐β‐alanine, C21H23N2O2+·C11H8NO4·C11H9NO4, and brucinium N‐phthaloyl‐β‐alaninate 5.67‐hydrate, C23H27N2O4+·C11H8NO4·5.67H2O, reveals that, unlike strychninium cations, brucinium cations display a tendency to produce stacking inter­actions with cocrystallizing guests.  相似文献   

12.
Two salts of acyclic Schiff base cationic ligands, namely N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride monohydrate, C17H22N4O42+·2Cl·H2O, (I), and 2‐hydroxy‐N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride, C17H22N4O52+·2Cl, (II), were synthesized as precursors in order to obtain new acyclic and macrocyclic multidentate ligands and complexes. The cation conformations in compounds (I) and (II) are different in the solid state, although the cations are closely related chemically. Similarly, the hydrogen‐bonding networks involving ammonium cations, hydroxyl groups and chloride anions are also different. In the cation of compound (II), the hydroxyl group is disordered over two sets of sites, with occupancies of 0.785 (8) and 0.215 (8).  相似文献   

13.
The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

14.
Abstract

Reactions of oxidizing radicals like hydroxyl (·OH) radical, specific electron transfer agents like N 3 ·, and I 2 ?. radicals were studied with selenourea (SeU) and compared with thiourea (ThU) using pulse radiolysis technique in microsecond time scales. Both the compounds efficiently react with ·OH radicals, however, SeU undergoes easier oxidation by secondary oxidants as compared to ThU. The results were supported by cyclic voltammetry studies. The radical cations of both SeU and ThU formed on oxidation undergo dimerization with the parent molecule to form two-centered three-electron-hemi bonded radical cations absorbing at 410 and 400 nm respectively with the stabilization energies of 21.1 and 20.5 kcal/mol for SeU and ThU, respectively. Preliminary studies indicated that at low concentration of SeU, the dimerization is prevented and the oxidation reaction produced metallic Se nanoparticles.  相似文献   

15.
The radiation induced degradation of 4-nitrophenol (4-NP) has been studied by gamma irradiation, while the reactivity and spectral features of the short lived transients formed by reaction with primary transient radicals at different pHs has been investigated by pulse radiolysis technique. In steady state radiolysis a dose of 4.4 k Gy is able to degrade 98% of 1×10−4 mol dm−3 4-NP. 4-NP has pKa at 7.1, above which it is present in the anionic form. At pH 5.2, OH and N3 radicals were found to react with 4-NP with rate constants of 4.1×109 dm3 mol−1 s−1 and 2.8×108 dm3 mol−1 s−1, respectively. Differences in the absorption spectra of species formed in the reactions of 4-NP with OH and N3 radicals suggested that OH radicals add to the aromatic ring of 4-NP along with electron transfer reaction, whereas N3 radicals undergo only electron transfer reaction. At pH 9.2, rate constants for the reaction of OH radicals with 4-NP was found to be higher by a factor of 2 compared to that at pH 5.2. This has been assigned to the deprotonation of 4-NP at pH 9.2.  相似文献   

16.
In 1‐naphthylammonium iodide, C10H10N+·I, and naphthalene‐1,8‐diyldiammonium diiodide, C10H12N22+·2I, the predominant hydrogen‐bonding pattern can be described using the graph‐set notation R42(8). This is the first report of a structure of a diprotonated naphthalene‐1,8‐diyldiammonium salt.  相似文献   

17.
Crystals of the title compounds, namely 1‐(diaminomethylene)thiouron‐1‐ium perchlorate, C2H7N4S+·ClO4, 1‐(diaminomethylene)thiouron‐1‐ium hydrogen sulfate, C2H7N4S+·HSO4, 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen phosphate, C2H7N4S+·H2PO4, and its isomorphic relative 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen arsenate, C2H7N4S+·H2AsO4, are built up from a nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective anion linked together via N—H...O hydrogen bonds. Both arms of the cation are planar, but they are twisted with respect to one another around the central N atom. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into layers in the perchlorate, double layers in the hydrogen sulfate, and a three‐dimensional network in the dihydrogen phosphate and dihydrogen arsenate salts. This work demonstrates the usefulness of 1‐(diaminomethylene)thiourea in crystal engineering for the formation of supramolecular networks with acids.  相似文献   

18.
Synthesis of conjugated poly(3,4‐ethylenedioxythiophene) (PEDOT) polymers is achieved through the radiolysis of N2O‐saturated aqueous solutions of 3,4‐ethylenedioxythiophene by using two different oxidizing species: HO. (hydroxyl) and N3. (azide) radicals. Both oxidative species lead to self‐assembled polymers that are evidenced in solution by cryotransmission electron microscopy and UV/Vis absorption spectroscopy and, after centrifugation and deposition, by scanning electron microscopy and attenuated total reflectance FTIR techniques. Whereas HO. radicals lead to PEDOT‐OH globular nanostructures with hydrophilic properties, N3. radicals enable the formation of amphiphilic PEDOT‐N3 fibrillar nanostructures. These results, which highlight the differences in the intermolecular interaction behaviors of the two kinds of PEDOT polymers, are discussed in terms of polymerization mechanisms.  相似文献   

19.
The title salt, C18H46N2O2Si22+·2Cl, has been synthesized by reaction of N,N′‐bis(2‐hydroxyethyl)ethylenediamine with tert‐butyldimethylsilyl chloride. The zigzag backbone dication is located across an inversion centre and the two chloride anions are related by inversion symmetry. The ionic components form a supramolecular two‐dimensional network via N—H...Cl hydrogen bonding, which is responsible for the high melting point compared with the oily compound N,N′‐bis[2‐(tert‐butyldimethylsiloxy)ethyl]ethylenediamine.  相似文献   

20.
Different salts of the 2‐phenyl‐1,10‐phenanthrolin‐1‐ium cation, (pnpH)+, are obtained by reacting 2‐phenyl‐1,10‐phenanthroline (pnp), C18H12N2, (I), with a variety of anions, such as hexafluoridophosphate, C18H13N2+·PF6, (II), trifluoromethanesulfonate, C18H13N2+·CF3SO3, (III), tetrachloridoaurate, (C18H13N2)[AuCl4], (IV), and bromide (as the dihydrate), C18H13N2+·Br·2H2O, (V). Compound (I) crystallizes with Z′ = 2, with both independent molecules adopting a coplanar conformation. In (II)–(IV), a hydrogen bond exists between the cation and anion, while one of the lattice water molecules serves as a hydrogen‐bonded bridge between the cation and anion in (V). Reaction of (I) with HAuCl4 gives the salt complex (IV); however, reaction with KAuCl4 produces the monodentate complex trichlorido(2‐phenyl‐1,10‐phenanthroline‐κN10)gold(III), [AuCl3(C18H12N2)], (VI). Dichlorido(2‐phenyl‐1,10‐phenanthroline‐κ2N,N′)copper(II), [CuCl2(C18H12N2)], (VII), results from the reaction of CuCl2·2H2O and (I), in which the CuII center adopts a tetrahedrally distorted square‐planar geometry. The pendent phenyl ring twists to a bisecting position relative to the phenanthroline plane. The square‐planar PdII complex, bromido[2‐(phenanthrolin‐2‐yl)phenyl‐κ3C1,N,N′]palladium(II), [PdBr(C18H11N2)], (VIII), is obtained from the reaction of (I) with [PdCl2(cycloocta‐1,5‐diene)], followed by addition of bromine. A coplanar geometry for the pendent ring is adopted as a result of the tridentate bonding motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号