首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electronic structures of the weakly bound Rn2 were calculated by the two‐component Møller–Plesset second‐order perturbation and coupled‐cluster methods with relativistic effective core potentials including spin–orbit operators. The calculated spin–orbit effects are small, but depend strongly on the size of basis sets and the amount of electron correlations. Magnitudes of spin–orbit effects on De (0.7–3.0 meV) and Re (−0.4∼−2.2 Å) of Rn2 are comparable to previously reported values based on configuration interaction calculations. A two‐component approach seems to be a promising tool to investigate spin–orbit effects for the weak‐bonded systems containing heavy elements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 139–143, 1999  相似文献   

2.
3.
A detailed exposition of spin–spin operator matrix elements is presented in the context of the graphical unitary group approach (GUGA ) to atomic and molecular physics and quantum chemistry. A compendium of subgraph types and formulae is given. Aspects of computer implementation within the structure of the Columbus CI programs is discussed.  相似文献   

4.
We studied the energy spectrum of the 1‐D extended Hubbard model with spin‐dependent hopping and related spin ladder system formed by two coupled XXZ spin 1/2 chains with the interchain interaction of Ising type. It was proved that the model excitation spectrum has no gap excepting some special values of z‐projection of the ground‐state total spin. The thorough analytic consideration of two‐magnon states was given. The existence up to five bound states at specified value of quasimomentum of the pair of inverted spins was shown. We also present the results of density matrix renormalization group calculations that showed nonadequacy of the pair approximation for n‐magnon bound states of the extended model with the strong electron–electron interactions. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

5.
We have implemented ab initio linear combinations of Gaussian‐type orbital calculations with generalized localized spin density approximation (GLSDA) for a dimer of equilateral H3 as a model of the noncollinear magnetic clusters. It has been found that the GLSDA solution with the three‐dimensional noncollinear spin structure is, contrary to prior band calculations by other groups, the ground state near the Oh conformation. Further computational results are compared to that of ab initio generalized Hartree–Fock. The difference between them and the influence of the correlation correction were discussed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

6.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent, two‐component relativistic calculations, termed the Kramers‐unrestricted HF (KUHF) method, is developed. The present KUHF method, which is formulated as a relativistic counterpart of nonrelativistic UHF, is based on quaternion algebra and partly uses time‐reversal symmetry. The fundamental characteristics of KUHF are discussed in this study. From numerical assessments, it was revealed that KUHF gives a corresponding solution to nonrelativistic UHF; furthermore, KUHF properly describes spin‐orbit interactions. In addition, KUHF can improve the self‐consistent field convergence behavior in spin‐dependent calculations, for example, for f‐block elements.  相似文献   

7.
Expressions of the matrix elements of the spin–other–orbit and spin–orbit interactions for the various multiplets of all the states of ?2- and ?3-electron configurations are reported and used to evaluate the Hartree–Fock values of these interactions in the neutral atoms Ce(4?2), Pr(4?3), Ho(4?11) and Er(4?12). The required values of the spin–spin parameters M, and the spin-orbit parameter ζ for these atoms were obtained using numerical Hartree–Fock wave functions.  相似文献   

8.
We present a graphical technique for generating and indexing spin monomials of high‐spin systems. The procedure consists of developing a graph with at most n line segments from each node in a given row to the one immediately lower, where n is the multiplicity of single‐particle spin function. The paths lead to monomials with definite M values at each node. This technique has been used to generate and diagonalize the model spin Hamiltonian. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 389–393, 1999  相似文献   

9.
The main photophysical properties of a series of recently synthetized 1,2‐ and 1,3‐squaraines, including absorption electronic spectra, singlet‐triplet energy gaps, and spin‐orbit matrix elements, have been investigated by means of density functional theory (DFT) and time‐dependent DFT approaches. A benchmark of three exchange‐correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T1 and T2) that lie below the energy of the excited singlet one (S1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet‐triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent two‐component relativistic calculations, termed the Kramers‐restricted open‐shell HF (KROHF) method, is developed. The present KROHF method is defined as a relativistic analogue of ROHF using time‐reversal symmetry and quaternion algebra, based on the Kramers‐unrestricted HF (KUHF) theory reported in our previous study (Int. J. Quantum Chem., doi: 10.1002/qua.25356 ). As seen in the nonrelativistic ROHF theory, the ambiguity of the KROHF Fock operator gives physically meaningless spinor energies. To avoid this problem, the canonical parametrization of KROHF to satisfy Koopmans' theorem is also discussed based on the procedure proposed by Plakhutin et al. (J. Chem. Phys. 2006 , 125, 204110). Numerical assessments confirmed that KROHF using Plakhutin's canonicalization procedure correctly gives physical spinor energies within the frozen‐orbital approximation under spin–orbit interactions.  相似文献   

11.
We proposed the ab initio linear combination of Gaussian type orbital (LCGTO) generalized spin orbital GW (GSO–GW) method and calculated triangular hydrogen molecules as models of the noncolinear magnetic clusters. A remarkable improvement of ionized potentials (IPs) by the GW procedure for GHFS solutions is observed in comparison with calculational results by full CI. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 369–374, 2001  相似文献   

12.
Indirect relativistic bridge effect (IRBE) and indirect relativistic substituent effect (IRSE) induced by the ‘heavy’ environment of the IV‐th, V‐th and VI‐th main group elements on the one‐bond and geminal 13C? 1H spin–spin coupling constants are observed, and spin‐orbit parts of these two effects were interpreted in terms of the third‐order Rayleigh–Schrödinger perturbation theory. Both effects, IRBE and IRSE, rapidly increase with the total atomic charge of the substituents at the coupled carbon. The accumulation of IRSE for geminal coupling constants is not linear with respect to the number of substituents in contrast to the one‐bond couplings where IRSE is an essentially additive quantity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
We have investigated the effects of spin–orbit (SO) interactions on noncollinear molecular magnetism by combining the classical Dzyaloshinsky–Moriya (DM) model and ab initio generalized spin orbital (GSO) method. We have derived an estimation scheme of the magnetic anisotropy energy (MAE) and the Dzyaloshinsky vector based on the SO first‐order perturbation theory (SOPT1) for GSO Hartree–Fock (GHF) solutions. We found that the fundamental results of GHF‐SOPT1 method can be reproduced by diagonalizing the core Hamiltonian plus SO terms, and that the spin topologies of odd‐ring systems can be determined by the topological indices of the singly occupied molecular orbitals. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

14.
Many catalytic and biomolecular reactions containing transition metals involve changes in the electronic spin state. These processes are referred to as “spin‐forbidden” reactions within nonrelativistic quantum mechanics framework. To understand detailed reaction mechanisms of spin‐forbidden reactions, one must characterize reaction pathways on potential energy surfaces with different spin states and then identify crossing points. Here we propose a practical computational scheme, where only the lowest mixed‐spin eigenstate obtained from the diagonalization of the spin‐coupled Hamiltonian matrix is used in reaction path search calculations. We applied this method to the 6,4FeO+ + H26,4Fe+ + H2O, 6,4FeO+ + CH46,4Fe+ + CH3OH, and 7Mn+ + OCS → 5MnS+ + CO reactions, for which crossings between the different spin states are known to play essential roles in the overall reaction kinetics. © 2018 Wiley Periodicals, Inc.  相似文献   

15.
The surface morphology of thin molecularly imprinted polymer films has been studied using atomic force microscopy (AFM). The films were produced by spin coating onto glass substrates and examined as a function of host polymer, imprinting template, casting solvent, spin‐coater rotation speed and post‐production treatment. It was observed that the gross features of such films are template controlled. The fine structure is determined by parameters such as solvent, spin speed or subsequent treatment. The relationship between these observations, polymer–template interactions and the mechanism of film formation in spin coating is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The calculations of geminal and vicinal 29Si–1H spin–spin coupling constants across double bond in 15 alkenylmethylsilanes and alkenylchlorosilanes were carried out at the second‐order polarization propagator approach level in a good agreement with experiment. Two structural trends, namely, (i) the geometry of the coupling pathway and (ii) the effect of the electrowithdrawing substituent, have been interpreted in terms of the natural J‐coupling analysis within the framework of the natural bond orbital approach. Thus, the marked difference between cisoidal and transoidal 29Si–1H spin–spin coupling constants across double bond was accounted for the delocalization contributions including bonding and antibonding Si–C and C–H orbitals, whereas the chlorine effect was explained in terms of the steric contributions including bonding Si–Cl orbitals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin‐orbit, the paramagnetic spin‐orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one‐bond and two‐bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen‐bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one‐bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton‐acceptor or proton‐donor) present in the interaction. Two‐bond intermolecular coupling constants vary more than the corresponding one‐bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin‐orbit term in all one‐bond interaction.  相似文献   

18.
The vibration and rotation of molecules affects nuclear spin–spin coupling constants. This manifests itself as a temperature dependence of the coupling and also as an isotope effect (after allowing, where necessary, for differing magnetogyric ratios of the two nuclei involved in the isotopic substitution). Within the Born–Oppenheimer approximation, a nuclear spin–spin coupling surface can be defined for each pair of coupled nuclei. This surface is sampled by the nuclei as they undergo the excursions about equilibrium geometry that are governed by the force field. An accurate ab initio carbon–proton spin–spin coupling surface for the methane molecule has been calculated. This was obtained by summing the surfaces for each of the four contributions—Fermi contact, spin–dipolar, orbital paramagnetic, and orbital diamagnetic—expressed as power series in terms of symmetry coordinates. Preliminary calculations for 13CH4 and 13CD4 give a difference of only 6% between the calculated and observed nuclear motion contributions. The observed temperature dependence is also accounted for by the calculations. For these isotopomers, bond stretching plays the dominant role. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Experimental measurements and second‐order polarization propagator approach (SOPPA) calculations of 77Se? 1H spin–spin coupling constants together with theoretical energy‐based conformational analysis in the series of 2‐substituted selenophenes have been carried out. A new basis set optimized for the calculation of 77Se? 1H spin–spin coupling constants has been introduced by extending the aug‐cc‐pVTZ‐J basis for selenium. Most of the spin–spin coupling constants under study, especially vicinal 77Se? 1H couplings, demonstrated a remarkable stereochemical behavior with respect to the internal rotation of the substituent in the 2‐position of the selenophene ring, which is of major importance in the stereochemical studies of the related organoselenium compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A significant reduction in the computational effort for the evaluation of the electronic repulsion integrals (ERI) in ab initio quantum chemistry calculations is obtained by using Cholesky decomposition (CD), a numerical procedure that can remove the zero or small eigenvalues of the ERI positive (semi)definite matrix, while avoiding the calculation of the entire matrix. Conversely, due to its antisymmetric character, CD cannot be directly applied to the matrix representation of the spatial part of the two‐electron spin‐orbit coupling (2e‐SOC) integrals. Here, we present a computational strategy to achieve a Cholesky representation of the spatial part of the 2e‐SOC integrals, and propose a new efficient CD algorithm for both ERI and 2e‐SOC integrals. The proposed algorithm differs from previous CD implementations by the extensive use of a full‐pivoting design, which allows a univocal definition of the Cholesky basis, once the CD δ threshold is made explicit. We show that is the upper limit for the errors affecting the reconstructed 2e‐SOC integrals. The proposed strategy was implemented in the ab initio program Computational Emulator of Rare Earth Systems (CERES), and tested for computational performance on both the ERI and 2e‐SOC integrals evaluation. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号