首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The effect of linearly polarized vibration on the stability of a plane displacement front in a porous medium is studied. The problem of the stability of the motion of a plane displacement front traveling at a constant velocity U under the action of vibration normal to the front is considered. It is shown that under the action of vibration the dynamics of the plane displacement front can be described by the Mathieu equation with a dissipative term. Using the standard averaging method, in the case of high-frequency vibration it is revealed that vibration can only increase the stability of the system. It is found that the vibration stabilizes the plane displacement front with respect to part of the perturbation spectrum.  相似文献   

2.
The stability of the phase interface in geothermal systems is considered in the isothermal approximation with allowance for capillary effects. The dispersion relation is obtained and the domains of stability and instability of steady-state vertical flows are found. Possible types of transition to instability, namely, transitions with the most unstable mode corresponding to zero and infinite wavenumbers or to all wavenumbers simultaneously, are described. In the first case the nonlinear Kolmogorov-Petrovskii-Piskunov equation describing the evolution of a narrow strip of weakly unstable modes on the stability threshold is derived. The effect of the parameters of the system on its stability is investigated.  相似文献   

3.
The class of models of porous media based on the concept of an ensemble of pores with a certain distribution of the main geometrical parameters (e.g., pore size) is studied. The case of the saturation of the pore space with a single-phase multicomponent fluid mixture is studied with and without taking into account the transfer of electric charges. Transfer laws are derived from the condition of decreasing free energy. The hydrodynamic connectivity of pores (and electrical conductivity) is described by two kernels: one kernel describes the connectivity of pores in space, and the other describes the connectivity of pores in the elementary macrovolume. The frequency dependences of the dynamic permeability determined in laboratory experiments and the electrical conductivity of the porous medium were determined using the concept of an ensemble of pores. The relationship between the models considered and relaxation filtration models is established.  相似文献   

4.
Models of the residual oil saturation and models of its effect on the flow in injection wells are proposed. The threshold nature of the dependence of the residual oil saturation on the capillary number determines a change in the flow regimes in the neighborhood of the injection well. The cases of pure, contaminated, and compressible reservoirs are considered. The dependences of the basic problem parameters on the displacement conditions and the state of the reservoir are obtained, together with formulas for the pressure distribution and well injectivity. The topicality of such a simulation for field calculations is demonstrated.  相似文献   

5.
The branching off of steady-state regimes from mechanical equilibrium is studied for the problem of filtration convection in a parallelepiped. The conditions for the geometric parameters under which stable continuous families of steady-state regimes develop are found. The stability of equilibria of the family with respect to three-dimensional perturbations is analyzed in a numerical experiment using a finite-difference method.  相似文献   

6.
The problem of hydraulic fracture formation in a porous medium is investigated in the approximation of small fracture opening and inertialess incompressible Newtonian fluid fracture flow when the seepage through the fracture walls into the surrounding reservoir is asymptotically small or large. It is shown that the system of equations describing the propagation of the fracture has self-similar solutions of power-law or exponential form only. A family of self-similar solutions is constructed in order to determine the evolution of the fracture width and length, the fluid velocity in the fracture, and the length of fluid penetration into the porous medium when either the fluid flow rate or the pressure as a power-law or exponential function of time is specified at the fracture entrance. In the case of finite fluid penetration into the soil the system of equations has only a power-law self-similar solution, for example, when the fluid flow rate is specified at the fracture entrance as a quadratic function of time. The solutions of the self-similar equations are found numerically for one of the seepage regimes.  相似文献   

7.
The problem of determining the equilibrium configuration of a plane, doubly connected ice-rock body formed about a system of two freezing columns traversing a flow through a porous medium is asymptotically analyzed in the limit of small Péclet numbers. Two terms of the asymptotic expansion are retained. It is shown that in this approximation the criterion of joining of the doubly connected body coincides with the criterion of non-disjoining of the simply connected body. However, the solution structure is such that taking the third asymptotic term into account can lead to a second solution when the ice-rock body is close to joining. This means that the size of the joining-disjoining hysteresis loop is of at least the second order in the Péclet number.  相似文献   

8.
It is well known that the relationship between capillary pressure and saturation, in two-phase flow problems demonstrates memory effects and, in particular, hysteresis. Explicit representation of full hysteresis with a myriad of scanning curves in models of multiphase flow has been a difficult problem. A second complication relates to the fact that P cS relationships, determined under static conditions, are not necessarily valid in dynamics. There exist P cS relationships which take into account dynamic effects. But the combination of hysteretic and dynamic effects in the capillary relationship has not been considered yet. In this paper, we have developed new models of capillary hysteresis which also include dynamic effects. In doing so, thermodynamic considerations are employed to ensure the admissibility of the new relationships. The simplest model is constructed around main imbibition and drainage curves and assumes that all scanning curves are vertical lines. The dynamic effect is taken into account by introducing a damping coefficient in P cS equation. A second-order model of hysteresis with inclined scanning curves is also developed. The simplest version of proposed models is applied to two-phase incompressible flow and an example problem is solved.  相似文献   

9.
The problem of the average flow of a viscous incompressible fluid saturating a stationary porous incompressible matrix under a periodic action is considered. It is shown that a spatial inhomogeneity of the medium porosity leads to an average fluid flow, quadratically dependent on the action amplitude, in the direction of increase in porosity. In particular, this means that wave action on an oil reservoir could lead to fluid flow on the interfaces from low-porosity,weakly permeable collector regions into high-porosity regions, for example, to flow from blocks to fractures in fractured porous reservoirs, which makes it possible to enhance oil production. It is shown that in the presence of a constant pressure gradient the flow component generated by a periodic action can provide a substantial proportion of the total flow, especially on the boundaries with low-porosity strata or blocks. With increase in amplitude this may significantly exceed the component associated with the constant pressure gradient.  相似文献   

10.
The problem of plane convective flow through a porous medium in a rectangular vessel with a linear temperature profile steadily maintained on the boundary is considered. The onset of unsteady regimes is investigated numerically. It is shown that their onset scenarios depend on the vessel dimensions and the seepage Rayleigh number and may be as follows: the generation of stable and unstable periodic regimes as a result of a one-sided bifurcation, the generation of a stable periodic regime as a result of an Andronov-Hopf cosymmetric bifurcation, the formation of a chaotic attractor, the branching-out of a stable quasi-periodic regime from a point of a single-parameter family of steady-state regimes, and the generation of unstable periodic regimes as a result of disintegration of homoclinic trajectories. The specifics of most of the bifurcations mentioned above are attributable to the cosymmetry of the problem considered.  相似文献   

11.
Plane nonlinear fluid flows through a porous medium which simulate a sink located at the same distance from the roof and floor of the stratum for two nonlinear flow laws are constructed. The following flow laws are taken: a power law and a law of special form reducing to analytic functions in the hodograph plane.  相似文献   

12.
The results of a numerical investigation of the process of oil displacement in a stratified inhomogeneous formation on the basis of the two-phase flow model with account for capillary forces are presented. It is shown that in many cases the vertical inhomogeneity of oil reservoirs may not be a cause of nonuniform displacement and the non-recovery of large oil reserves by the time of water breakthrough to the extraction surface. The action of the capillary forces is an additional factor leading to equalization of the water propagation front in the inhomogeneous formation, water breakthrough delay, and intensification of the mass transfer between the layers with different permeabilities. Analysis of the contribution of the interlayer flows to the water flooding of low-permeability formation intervals calls into question the practicability of blocking high-permeability inclusions in the neighborhood of pumping wells.  相似文献   

13.
In this article, analysis is presented to study the effect of Hall current on the rotating flow of a non-Newtonian fluid in a porous medium taking into consideration the modified Darcy's law. The Oldroyd-B fluid model is used to characterize the non-Newtonian fluid behavior. The governing equations for unsteady rotating flow have been modeled in a porous medium. The analysis includes the flows induced by general periodic oscillations and elliptic harmonic oscillations of a plate. The effect of the various emerging parameters is discussed on the velocity distribution. The analytical results are confirmed mathematically by giving comparison with previous studies in the literature. It is observed that the velocity distribution increases with an increase of Hall parameter. The behavior of permeability is similar to that of the Hall parameter.  相似文献   

14.
The problem of gas recovery in the process of methane hydrate dissociation in a reservoir saturated with gas-hydrate mixture is considered. The mathematical model of hydrate decomposition into gas and water is generalized to include the negative temperature interval and takes ice formation into account. The solution of the problem is represented in the self-similar approximation. It is shown that there exists a transition hydrate decomposition regime in which water and ice are formed simultaneously. A comparative analysis of the recovery is carried out on the basis of relations derived for the masses of recovered gas in different hydrate dissociation regimes. It is shown that an anomalous increase in the recovered gas volumes is observed in the transition hydrate dissociation regime.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 132–142. Original Russian Text Copyright © 2005 by Tsypkin.  相似文献   

15.
We present a mechanistic model of retrograde condensation processes in two- and three-dimensional capillary tube networks under gravitational forces. Condensate filling-emptying cycles in pore segments and gas connection–isolation cycles are included. With the pore-level distribution of gas and condensate in hand, we determine their corresponding relative permeabilities. Details of pore space and displacement are subsumed in pore conductances. Solving for the pressure field in each phase, we find a single effective conductance for each phase as a function of condensate saturation. Along with the effective conductance for the saturated network, the relative permeability for each phase is calculated. Our model porous media are two- and three-dimensional regular networks of pore segments with distributed size and square cross-section. With a Monte Carlo sampling we find the optimum network size to avoid size effects and then we investigate the effect of network dimensionality and pore size distribution on the relative permeabilities of gas and condensate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号