首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composition operators on weighted Bloch space   总被引:9,自引:0,他引:9  
We will characterize the boundedness and compactness of the composition operators on weighted Bloch space B log = { f ? H(D): supz ? D (1-| z|2) ( log\frac21-| z|2 )| f¢(z)| B_{ \log }= \{ f \in H(D): \sup_{z \in D } (1-\left| z\right|^2) \left( \log \frac{2}{1-\left| z\right|^2} \right)\left| f'(z)\right| < +¥} +\infty \} , where H(D) be the class of all analytic functions on D.  相似文献   

2.
We study the long-term behaviour of the parabolic evolution equation $\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \]$\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \] If A(t) A(t) converges to a sectorial operator A with s(A)?i \Bbb R = ? \sigma(A)\cap i \Bbb R =\emptyset as t?¥ t\to\infty , then the evolution family solving the homogeneous problem has exponential dichotomy. If also f(t)? f f(t)\to f_\infty , then the solution u converges to the 'stationary solution at infinity', i.e., limt?¥u(t) = -A\sp-1f=:u,        limt?¥u¢(t)=0,        limt?¥A(t)u(t)=Au. \lim_{t\to\infty}u(t)= -A\sp{-1}f_\infty=:u_\infty, \qquad \lim_{t\to\infty}u'(t)=0, \qquad \lim_{t\to\infty}A(t)u(t)=Au_\infty. .  相似文献   

3.
Let f be a real analytic function defined in a neighborhood of 0 ? \Bbb Rn 0 \in {\Bbb R}^n such that f-1(0)={0} f^{-1}(0)=\{0\} . We describe the smallest possible exponents !, #, / for which we have the following estimates: |f(x)| 3 c|x|a |f(x)|\geq c|x|^{\alpha} , |grad f(x)| 3 c|x|b |{\rm grad}\,f(x)|\geq c|x|^{\beta} , |grad f(x)| 3 c|f(x)|q |{\rm grad}\,f(x)|\geq c|f(x)|^{\theta} for x near zero with c > 0 c > 0 . We prove that a = b+1 \alpha=\beta+1, q = b/a\theta=\beta/\alpha . Moreover b = N+a/b \beta=N+a/b where $ 0 h a < b h N^{n-1} $ 0 h a < b h N^{n-1} . If f is a polynomial then |f(x)| 3 c|x|(degf-1)n+1 |f(x)|\geq c|x|^{(\deg f-1)^n+1} in a small neighborhood of zero.  相似文献   

4.
Suppose G is a transitive permutation group on a finite set W\mit\Omega of n points and let p be a prime divisor of |G||G|. The smallest number of points moved by a non-identity p-element is called the minimal p-degree of G and is denoted mp (G). ¶ In the article the minimal p-degrees of various 2-transitive permutation groups are calculated. Using the classification of finite 2-transitive permutation groups these results yield the main theorem, that mp(G) 3 [(p-1)/(p+1)] ·|W|m_{p}(G) \geq {{p-1} \over {p+1}} \cdot |\mit\Omega | holds, if Alt(W) \nleqq G {\rm Alt}(\mit\Omega ) \nleqq G .¶Also all groups G (and prime divisors p of |G||G|) for which mp(G) £ [(p-1)/(p)] ·|W|m_{p}(G)\le {{p-1}\over{p}} \cdot |\mit\Omega | are identified.  相似文献   

5.
In this paper we present homogenization results for elliptic degenerate differential equations describing strongly anisotropic media. More precisely, we study the limit as e? 0 \epsilon \to 0 of the following Dirichlet problems with rapidly oscillating periodic coefficients:¶¶ . \cases {{ -div(\alpha(\frac{x}{\epsilon}}, \nabla u) A(\frac{x}{\epsilon}) \nabla u) = f(x) \in L^{\infty}(\Omega) \atop u = 0 su \eth\Omega\ } ¶¶where, p > 1,     a: \Bbb Rn ×\Bbb Rn ? \Bbb R,     a(y,x) ? áA(y)x,x?p/2-1, A ? Mn ×n(\Bbb R) p>1, \quad \alpha : \Bbb R^n \times \Bbb R^n \to \Bbb R, \quad \alpha(y,\xi) \approx \langle A(y)\xi,\xi \rangle ^{p/2-1}, A \in M^{n \times n}(\Bbb R) , A being a measurable periodic matrix such that At(x) = A(x) 3 0A^t(x) = A(x) \ge 0 almost everywhere.¶¶The anisotropy of the medium is described by the following structure hypothesis on the matrix A:¶¶l2/p(x) |x|2 £ áA(x)x,x? £ L 2/p(x) |x|2, \lambda^{2/p}(x) |\xi|^2 \leq \langle A(x)\xi,\xi \rangle \leq \Lambda ^{2/p}(x) |\xi|^2, ¶¶where the weight functions l \lambda and L \Lambda (satisfying suitable summability assumptions) can vanish or blow up, and can also be "moderately" different. The convergence to the homogenized problem is obtained by a classical compensated compactness argument, that had to be extended to two-weight Sobolev spaces.  相似文献   

6.
Let K be a convex body in \mathbbRn \mathbb{R}^n with volume |K| = 1 |K| = 1 . We choose N 3 n+1 N \geq n+1 points x1,?, xN x_1,\ldots, x_N independently and uniformly from K, and write C(x1,?, xN) C(x_1,\ldots, x_N) for their convex hull. Let f : \mathbbR+ ? \mathbbR+ f : \mathbb{R^+} \rightarrow \mathbb{R^+} be a continuous strictly increasing function and 0 £ in-1 0 \leq i \leq n-1 . Then, the quantity¶¶E (K, N, f °Wi) = òKK f[Wi(C(x1, ?, xN))]dxN ?dx1 E (K, N, f \circ W_{i}) = \int\limits_{K} \ldots \int\limits_{K} f[W_{i}(C(x_1, \ldots, x_N))]dx_{N} \ldots dx_1 ¶¶is minimal if K is a ball (Wi is the i-th quermassintegral of a compact convex set). If f is convex and strictly increasing and 1 £ in-1 1 \leq i \leq n-1 , then the ball is the only extremal body. These two facts generalize a result of H. Groemer on moments of the volume of C(x1,?, xN) C(x_1,\ldots, x_N) .  相似文献   

7.
We prove a Helly-type theorem for the family of all k-dimensional affine subsets of a Hilbert space H. The result is formulated in terms of Lipschitz selections of set-valued mappings from a metric space (M,r) ({\cal M},\rho) into this family.¶Let F be such a mapping satisfying the following condition: for every subset M¢ ì M {\cal M'} \subset {\cal M} consisting of at most 2k+1 points, the restriction F|M F|_{\cal M'} of F to M¢ {\cal M'} has a selection fM (i.e. fM(x) ? F(x) for all x  ? M¢) f_{\cal M'}\,({\rm i.e.}\,f_{\cal M'}(x) \in F(x)\,{\rm for\,all}\,x\,\in {\cal M'}) satisfying the Lipschitz condition ||fM(x) - fM(y)||  £ r(x,y ), x,y ? M¢ \parallel f_{\cal M'}(x) - f_{\cal M'}(y)\parallel\,\le \rho(x,y ),\,x,y \in {\cal M'} . Then F has a Lipschitz selection f : M ? H f : {\cal M} \to H such that ||f(x) - f(y) ||  £ gr(x,y ), x,y ? M \parallel f(x) - f(y) \parallel\,\le \gamma \rho (x,y ),\,x,y \in {\cal M} where g = g(k) \gamma = \gamma(k) is a constant depending only on k. (The upper bound of the number of points in M¢ {\cal M'} , 2k+1, is sharp.)¶The proof is based on a geometrical construction which allows us to reduce the problem to an extension property of Lipschitz mappings defined on subsets of metric trees.  相似文献   

8.
We study incompressible Navier–Stokes flows in \mathbb Rd{\mathbb R^d} with small and well localized data and external force f. We establish pointwise estimates for large |x| of the form ct|x|-d £ |u(x,t)| £ ct|x|-d{c_t|x|^{-d}\le |u(x,t)|\le c^\prime_t|x|^{-d}}, where c t > 0 whenever ò0tòf(x,sdx ds 1 0{\int_0^t\int f(x,s)\,dx\,ds\not= {\bf 0}} . This sharply contrasts with the case of the Navier–Stokes equations without force, studied in Brandolese and Vigneron (J Math Pures Appl 88:64–86, 2007) where the spatial asymptotic behavior was |u(x,t)| @ Ct|x|-d-1{|u(x,t)|\simeq C_t|x|^{-d-1}} . In particular, this shows that external forces with non-zero mean, no matter how small and well localized (say, compactly supported in space-time), increase the velocity of fluid particles at all times t and at at all points x in the far-field. As an application of our analysis on the pointwise behavior, we deduce sharp upper and lower bounds of weighted L p -norms for strong solutions, extending the results obtained in Bae et al. (to appear) for weak solutions, by considering here a larger (and in fact, optimal) class of weight functions.  相似文献   

9.
A generalized Hlawka's inequality says that for any n (\geqq 2) (\geqq 2) complex numbers¶ x1, x2, ..., xn,¶¶ ?i=1n|xi - ?j=1nxj| \leqq ?i=1n|xi| + (n - 2)|?j=1nxj|. \sum_{i=1}^n\Bigg|x_i - \sum_{j=1}^{n}x_j\Bigg| \leqq \sum_{i=1}^{n}|x_i| + (n - 2)\Bigg|\sum_{j=1}^{n}x_j\Bigg|. ¶¶ We generalize this inequality to the trace norm and the trace of an n x n matrix A as¶¶ ||A - Tr A ||1 \leqq ||A||1 + (n - 2)| Tr A|. ||A - {\rm Tr} A ||_1\ \leqq ||A||_1 + (n - 2)| {\rm Tr} A|. ¶¶ We consider also the related inequalities for p-norms (1 \leqq p \leqq ¥) (1 \leqq p \leqq \infty) on matrices.  相似文献   

10.
We study the existence and multiplicity of nontrivial radial solutions of the quasilinear equation
{ll-div(|?u|p-2?u)+V(|x|)|u|p-2u=Q(|x|)f(u),    x ? \mathbbRN,u(x) ? 0,     |x|? ¥\left\{\begin{array}{ll}-{div}(|\nabla u|^{p-2}\nabla u)+V(|x|)|u|^{p-2}u=Q(|x|)f(u),\quad x\in \mathbb{R}^N,\\u(x) \rightarrow 0, \quad |x|\rightarrow \infty \end{array}\right.  相似文献   

11.
We consider systems of partial differential equations with constant coefficients of the form ( R(Dx, Dy)f = 0, P(Dx)f = g), f,g ? C(W),\big ( R(D_x, D_y)f = 0, P(D_x)f = {g}\big ), f,g \in {C}^{\infty}(\Omega),, where R (and P) are operators in (n + 1) variables (and in n variables, respectively), g satisfies the compatibility condition R(Dx, Dy)g = 0  and  W ì \Bbb Rn+1R(D_x, D_y){g} = 0 \ {\rm and} \ \Omega \subset {\Bbb R}^{n+1} is open. Let R be elliptic. We show that the solvability of such systems for certain nonconvex sets W\Omega implies that any localization at ¥\infty of the principle part Pm of P is hyperbolic. In contrast to this result such systems can always be solved on convex open sets W\Omega by the fundamental principle of Ehrenpreis-Palamodov.  相似文献   

12.
Let L p , 1 ≤ p< ∞, be the space of 2π-periodic functions f with the norm || f ||p = ( ò - pp | f |p )1 \mathord
/ \vphantom 1 p p {\left\| f \right\|_p} = {\left( {\int\limits_{ - \pi }^\pi {{{\left| f \right|}^p}} } \right)^{{1 \mathord{\left/{\vphantom {1 p}} \right.} p}}} , and let C = L be the space of continuous 2π-periodic functions with the norm || f || = || f || = maxe ? \mathbbR | f(x) | {\left\| f \right\|_\infty } = \left\| f \right\| = \mathop {\max }\limits_{e \in \mathbb{R}} \left| {f(x)} \right| . Let CP be the subspace of C with a seminorm P invariant with respect to translation and such that P(f) \leqslant M|| f || P(f) \leqslant M\left\| f \right\| for every fC. By ?k = 0 Ak (f) \sum\limits_{k = 0}^\infty {{A_k}} (f) denote the Fourier series of the function f, and let l = { lk }k = 0 \lambda = \left\{ {{\lambda_k}} \right\}_{k = 0}^\infty be a sequence of real numbers for which ?k = 0 lk Ak(f) \sum\limits_{k = 0}^\infty {{\lambda_k}} {A_k}(f) is the Fourier series of a certain function f λL p . The paper considers questions related to approximating the function f λ by its Fourier sums S n (f λ) on a point set and in the spaces L p and CP. Estimates for || fl - Sn( fl ) ||p {\left\| {{f_\lambda } - {S_n}\left( {{f_\lambda }} \right)} \right\|_p} and P(f λS n (f λ)) are obtained by using the structural characteristics (the best approximations and the moduli of continuity) of the functions f and f λ. As a rule, the essential part of deviation is estimated with the use of the structural characteristics of the function f. Bibliography: 11 titles.  相似文献   

13.
Let f ? C(\Bbb Rn,\Bbb Rn) f\in C(\Bbb R^n,\Bbb R^n) be quasimonotone increasing such that Y(f(y)-f(x)) £ -c Y(y-x) (x << y) \Psi (f(y)-f(x)) \!\le -c \Psi (y-x) (x\ll y) for a linear and strictly positive functional Y \Psi and c > 0. We prove that f is a homeomorphism with decreasing and Lipschitz continuous inverse and we prove the global asymptotic stability of the equilibrium solution of x¢=f(x) x'=f(x) .  相似文献   

14.
We establish uniform estimates for order statistics: Given a sequence of independent identically distributed random variables ξ 1, … , ξ n and a vector of scalars x = (x 1, … , x n ), and 1 ≤ k ≤ n, we provide estimates for \mathbb E   k-min1 £ in |xixi|{\mathbb E \, \, k-{\rm min}_{1\leq i\leq n} |x_{i}\xi _{i}|} and \mathbb E k-max1 £ in|xixi|{\mathbb E\,k-{\rm max}_{1\leq i\leq n}|x_{i}\xi_{i}|} in terms of the values k and the Orlicz norm ||yx||M{\|y_x\|_M} of the vector y x  = (1/x 1, … , 1/x n ). Here M(t) is the appropriate Orlicz function associated with the distribution function of the random variable |ξ 1|, G(t) = \mathbb P ({ |x1| £ t}){G(t) =\mathbb P \left(\left\{ |\xi_1| \leq t\right\}\right)}. For example, if ξ 1 is the standard N(0, 1) Gaussian random variable, then G(t) = ?{\tfrac2p}ò0t e-\fracs22ds {G(t)= \sqrt{\tfrac{2}{\pi}}\int_{0}^t e^{-\frac{s^{2}}{2}}ds }  and M(s)=?{\tfrac2p}ò0se-\frac12t2dt{M(s)=\sqrt{\tfrac{2}{\pi}}\int_{0}^{s}e^{-\frac{1}{2t^{2}}}dt}. We would like to emphasize that our estimates do not depend on the length n of the sequence.  相似文献   

15.
Let Lf(x)=-\frac1w?i,j ?i(ai,j(·)?jf)(x)+V(x)f(x){\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)} with the non-negative potential V belonging to reverse H?lder class with respect to the measure ω(x)dx, where ω(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying l-1w(x)|x|2 £ ?ni,j=1ai,j(x)xixj £ lw(x)|x|2.{\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. } We obtain some estimates for VaL-a{V^{\alpha}\mathcal{L}^{-\alpha}} on the weighted L p spaces and we study the weighted L p boundedness of the commutator [b, Va L-a]{[b, V^{\alpha} \mathcal{L}^{-\alpha}]} when b ? BMOw{b\in BMO_\omega} and 0 < α ≤ 1.  相似文献   

16.
Let a\alpha and b\beta be bounded measurable functions on the unit circle T. The singular integral operator Sa, bS_{\alpha ,\,\beta } is defined by Sa, b f = aPf + bQf(f ? L2 (T))S_{\alpha ,\,\beta } f = \alpha Pf + \beta Qf(f \in L^2 (T)) where P is an analytic projection and Q is a co-analytic projection. In the previous paper, the norm of Sa, bS_{\alpha ,\,\beta } was calculated in general, using a,b\alpha ,\beta and a[`(b)] + H\alpha \bar {\beta } + H^\infty where HH^\infty is a Hardy space in L (T).L^\infty (T). In this paper, the essential norm ||Sa, b ||e\Vert S_{\alpha ,\,\beta } \Vert _e of Sa, bS_{\alpha ,\,\beta } is calculated in general, using a[`(b)] + H + C\alpha \bar {\beta } + H^\infty + C where C is a set of all continuous functions on T. Hence if a[`(b)]\alpha \bar {\beta } is in H + CH^\infty + C then ||Sa, b ||e = max(||a|| , ||b|| ).\Vert S_{\alpha ,\,\beta } \Vert _e = \max (\Vert \alpha \Vert _\infty , \Vert \beta \Vert _\infty ). This gives a known result when a, b\alpha , \beta are in C.  相似文献   

17.
Let (M,g) be a connected compact manifold, C3 smooth and without boundary, equipped with a Riemannian distance d(x,y). If s : M ? M s : M \to M is merely Borel and never maps positive volume into zero volume, we show s = t °u s = t \circ u factors uniquely a.e. into the composition of a map t(x) = expx[-?y(x)] t(x) = {\rm exp}_x[-\nabla\psi(x)] and a volume-preserving map u : M ? M u : M \to M , where y: M ? \bold R \psi : M \to {\bold R} satisfies the additional property that (yc)c = y (\psi^c)^c = \psi with yc(y) :=inf{c(x,y) - y(x) | x ? M} \psi^c(y) :={\rm inf}\{c(x,y) - \psi(x)\,\vert\,x \in M\} and c(x,y) = d2(x,y)/2. Like the factorization it generalizes from Euclidean space, this non-linear decomposition can be linearized around the identity to yield the Hodge decomposition of vector fields.¶The results are obtained by solving a Riemannian version of the Monge--Kantorovich problem, which means minimizing the expected value of the cost c(x,y) for transporting one distribution f 3 0 f \ge 0 of mass in L1(M) onto another. Parallel results for other strictly convex cost functions c(x,y) 3 0 c(x,y) \ge 0 of the Riemannian distance on non-compact manifolds are briefly discussed.  相似文献   

18.
For the Dirichlet series F(s) = ?n = 1 anexp{ sln } F(s) = \sum\nolimits_{n = 1}^\infty {{a_n}\exp \left\{ {s{\lambda_n}} \right\}} with abscissa of absolute convergence σ a =0, we establish conditions for (λ n ) and (a n ) under which lnM( s, F ) = TR( 1 + o(1) )exp{ rR
/ | s| } \ln M\left( {\sigma, F} \right) = {T_R}\left( {1 + o(1)} \right)\exp \left\{ {{{{{\varrho_R}}} \left/ {{\left| \sigma \right|}} \right.}} \right\} for σ ↑ 0, where M( s, F ) = sup{ | F( s+ it ) |:t ? \mathbbR } M\left( {\sigma, F} \right) = \sup \left\{ {\left| {F\left( {\sigma + it} \right)} \right|:t \in \mathbb{R}} \right\} and T R and ϱ R are positive constants.  相似文献   

19.
Summary. Let \Bbb K {\Bbb K} be either the field of reals or the field of complex numbers, X be an F-space (i.e. a Fréchet space) over \Bbb K {\Bbb K} n be a positive integer, and f : X ? \Bbb K f : X \to {\Bbb K} be a solution of the functional equation¶¶f(x + f(x)n y) = f(x) f(y) f(x + f(x)^n y) = f(x) f(y) .¶We prove that, if there is a real positive a such that the set { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} contains a subset of second category and with the Baire property, then f is continuous or { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} for every x ? X x \in X . As a consequence of this we obtain the following fact: Every Baire measurable solution f : X ? \Bbb K f : X \to {\Bbb K} of the equation is continuous or equal zero almost everywhere (i.e., there is a first category set A ì X A \subset X with f(X \A) = { 0 }) f(X \backslash A) = \{ 0 \}) .  相似文献   

20.
We study the well-posedness of the fractional differential equations with infinite delay (P 2): Da u(t)=Au(t)+òt-¥a(t-s)Au(s)ds + f(t), (0 £ t £ 2p){D^\alpha u(t)=Au(t)+\int^{t}_{-\infty}a(t-s)Au(s)ds + f(t), (0\leq t \leq2\pi)}, where A is a closed operator in a Banach space ${X, \alpha > 0, a\in {L}^1(\mathbb{R}_+)}${X, \alpha > 0, a\in {L}^1(\mathbb{R}_+)} and f is an X-valued function. Under suitable assumptions on the parameter α and the Laplace transform of a, we completely characterize the well-posedness of (P 2) on Lebesgue-Bochner spaces Lp(\mathbbT, X){L^p(\mathbb{T}, X)} and periodic Besov spaces B p,qs(\mathbbT, X){{B} _{p,q}^s(\mathbb{T}, X)} .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号