首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

2.
Polyelectrolyte complexes between poly(methacrylic acid, sodium salt) and poly(diallyldimethylammonium chloride) (PDADMAC) or poly[2‐(methacryloyloxyethyl)trimethylammonium chloride] (PMOETAC) form gels, liquid phases, or soluble complexes depending on charge ratio, total polymer loading, polymer molecular weight, and ionic strength. Increasing the ionic strength of the medium led most polyelectrolyte pairs to transition from gel through liquid complexes (complex coacervate) to soluble complexes. These transitions shift to higher ionic strengths for higher molecular weight polymers, as well as for PMOETAC compared to PDADMAC. The complex phases swelled with increasing polymer loading, ultimately merging with the supernatant phase at a critical polymer loading. The isolated liquid complex phases below and above this critical loading were temperature‐sensitive, showing cloud points followed by macroscopic phase separation upon heating. Incorporating 5 mol % lauryl methacrylate into the polyanion led to increased complex yield with PDADMAC, and increased resistance to ionic strength. In contrast, incorporating 30 mol % of oligo(ethylene glycol) methacrylate into the polyanion led to decreased complex yield, and to lower resistance to ionic strength. Two polyelectrolyte systems that produced liquid complexes were used to encapsulate hydrophobic oils, and in one case were used to demonstrate the feasibility of crosslinking the resulting capsule walls. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4129–4143, 2007  相似文献   

3.
Cationic polyelectrolytes were synthesized and used as semipermanent coating materials for capillaries in electrophoresis. The polyelectrolytes used were a homopolymer of poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its poly(ethylene glycol) (PEG)‐grafted analogue. Two PMOTAC polyelectrolytes, with molar masses of 85,000 and 300,000 g/mol, and PEG‐grafted PMOTAC with a molar mass of 280,000 g/mol were synthesized and then characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Attachment of the polyelectrolytes to the wall of the fused silica capillary for electrophoresis caused the electroosmotic flow (EOF) to reverse. The polyelectrolyte coatings were tested over the pH range 2–11 at different buffer ionic strengths, and the most stable and strongest anodic EOFs were obtained at acidic pH values with low ionic strength buffers. Between runs the capillary is merely rinsed for 2 or 3 min with the background electrolyte solution. With the PMOTAC coatings at pH values ≤5, the RSDs of the EOFs were less than 2.9% after 60 injections. The effects of the molar mass of the polycation and of PEGylation of PMOTAC on the interactions between the polycations and basic proteins were studied at acidic pH values. The differences in the effective electrophoretic mobilities, resolution values, and plate numbers of the proteins with the different coatings were due to the EOF, as demonstrated through calculations of reduced mobilities, relative resolution values, and relative plate numbers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2655–2663, 2007  相似文献   

4.
Cationic poly(methacryl oxyethyl trimethylammonium chloride), PMOTAC, and its poly(oxyethylene), POE, grafted analog have been synthesised. The molar mass of the POE grafts was Mw = 200 g/mol, and the grafting degrees of the synthesised copolymers were 2, 5, and 15 mol %. The effect of the POE grafts on the solution properties and the conformation of the polycation has been investigated in aqueous NaNO3 by means of dynamic and static light scattering, viscometry, and Raman spectroscopy. It was found that the polyelectrolyte properties are more pronounced for the homopolymer than for the POE‐grafted copolymers. The increase of the POE‐grafting degree dramatically decreases the hydrodynamic radius of individual macromolecules and causes intermolecular association. It also suppresses the conformational response of the copolymers upon changing the ionic strength with respect to that of the homopolymer. DFT calculations have been used to estimate a possible mechanism of interaction between the POE grafts and the MOTAC repeating units. It has been revealed that the POE grafts are capable of forming intramolecular hydrogen bonds with the MOTAC groups. The latter was confirmed experimentally; addition of free POE chains to a solution of PMOTAC results in formation of intermolecular PMOTAC/POE complexes. Increasing the POE concentration decreases the solution viscosity. At the same time, the bimodal distributions of the hydrodynamic radius, which are typical for polyelectrolytes in salt‐free solutions, become monomodal representing the PMOTAC/POE complexes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 547–557, 2008  相似文献   

5.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

6.
We report a poly(ethylene glycol)‐poly(L ‐alanine)‐azobenzene‐poly(L ‐alanine)‐poly(ethylene glycol) (PEG‐PA‐Z‐PA‐PEG) as a temperature and light sensitive polymer. The poly(ethylene glycol)‐poly(L ‐alanine) diblock copolymers with a flexible‐rigid block structure were coupled by an azobenzene group that undergoes a reversible configurational change between “trans” and “cis” upon exposure to UV and vis light. The single azobenzene molecule embedded in the middle of a block copolymer with a flexible (shell)‐rigid (core) structure significantly affected molecular assembly, micelle size, polypeptide secondary structure, and sol‐to‐gel transition temperature of the polymer aqueous solution, depending on its exposure to UV or vis light. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The photophysical and ion‐sensing properties of densely grafted conjugated polymer poly‐p‐phenylenevinylene‐g‐poly(2‐(methacryloyloxy)ethyl)trimethylammonium chloride (PPV‐g‐PMETAC) are presented herein. The grafted polymer exhibits excellent iodide‐sensing which is easily observed using fluorescence spectroscopy. The iodide detection limit for PPV‐g‐PMETAC was found to be 10 nM and was independent of temperature and pH <12. The change in fluorescence of PPV‐g‐PMETAC, upon exposure to iodide, was attributed to polymer aggregation due to changes in the morphology of the grafted PMETAC side chains, which was observed using atomic force microscopic and dynamic light scattering studies. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1997–2003  相似文献   

8.
We have measured the self‐diffusion coefficients of a series of oligo‐ and poly(ethylene glycol)s with molecular weights ranging from 150 to 10,000, in aqueous solutions and gels of poly(vinyl alcohol) (PVA), using the pulsed‐gradient spin‐echo NMR techniques. The PVA concentrations varied from 0 to 0.38 g/mL which ranged from dilute solutions to polymer gels. Effects of the diffusant size and polymer concentration on the self‐diffusion coefficients have been investigated. The temperature dependence of the self‐diffusion coefficients has also been studied for poly(ethylene glycol)s with molecular weights of 600 and 2,000. Several theoretical models based on different physical concepts are used to fit the experimental data. The suitability of these models in the interpretation of the self‐diffusion data is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2396–2403, 1999  相似文献   

9.
Multiwall carbon nanotube (MWNT) was grafted with polyacrylate‐g‐poly (ethylene glycol) via the following two steps. First, hydroxyl groups on the surface of acid‐treated MWNT reacted with linear poly(acryloyl chloride) to generate graft on MWNT; secondly, the remaining acryloyl chloride groups were subjected to esterification with poly(ethylene glycol) leading the grafted chains on the surface of MWNTs. Thus obtained grafted MWNT was characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Thermogravimetric analysis showed that the weight fraction of grafted polymers amounted to 80% of the modified MWNT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6880–6887, 2006  相似文献   

10.
Multistimuli responsive grafted poly(ether tert‐amine) (gPEAs), which were comprised of poly(propylene oxide) (PPO) in backbone and poly(ethylene oxide) (PEO) as grafted chain, were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial poly(propylene glycol) diglycidyl ether and Jeffamine L100. These gPEAs exhibit very sharp response to temperature, pH and ionic strength with tunable cloud point (CP). The CP of gPEA aqueous solution increases with increasing the PEO content or decreasing pH value, varying from 27 to 77 °C. Compared with linear PEA101, gPEA110 of completely grafted structure in aqueous solution exhibits sharper response to temperature with ΔT around 1 °C. The results obtained from TEM and dynamic light scattering reveal that gPEAs are dispersed as uniform sized nano‐micelles in aqueous at room temperature, which can further aggregate into mesoglobules of complex structure at high temperature (>CP). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6353–6361, 2009  相似文献   

11.
In this work the intrinsic viscosity of poly(ethylene glycol)/poly(vinyl pyrrolidone) blends in aqueous solutions were measured at 283.1–313.1 K. The expansion factor of polymer chain was calculated by use of the intrinsic viscosities data. The thermodynamic parameters of polymer solution (the entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient) were evaluated by temperature dependence of polymer chain expansion factor. The obtained thermodynamic parameters indicate that quality of water was decreased for solutions of poly(ethylene oxide), poly(vinyl pyrrolidone) and poly(ethylene oxide)/poly(vinyl pyrrolidone) blends by increasing temperature. Compatibility of poly(ethylene oxide)/poly(vinyl pyrrolidone) blends were explained in terms of difference between experimental and ideal intrinsic viscosity and solvent–polymer interaction parameter. The results indicate that the poly(ethylene glycol)/poly(vinyl pyrrolidone) blends were incompatible.  相似文献   

12.
The free‐radical polymerization of styrene initiated from a functionalized poly(ethylene terephthalate) (PET) surface yielded a tethered polymer layer. The anchoring of the initiator species on the PET surface was performed from surface‐reactive groups easily generated by an alkaline hydrolysis of PET. After each surface modification, PET films were characterized by X‐ray photoelectron spectroscopy, measurements of water contact angles, and time‐of‐flight secondary‐ion mass spectrometry. The influence of the polymerization duration, the grafted initiator density, and the grafting mode on the efficiency of the surface‐initiated polymerization of styrene was investigated. In some cases, the tethering of the polystyrene layer on PET could be a reversible process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1347–1359, 2003  相似文献   

13.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

14.
Poly(vinyl chloride)-poly(ethylene oxide) block copolymers have been synthesized in solution and emulsion. The polymers were made by first synthesizing macroazonitriles through the reaction of 4,4′-azobis-4-cyanovleryl chloride with hydroxy-terminated poly(ethylene oxide) of varying molecular weights. These macroazonitriles had molecular weights in the range of 3000–88,000 and degrees of polymerization from 5 to 24. Thermal decomposition of the azolinkages in the presence of vinyl chloride monomer yielded block copolymers containing form 2 to 20 wt % poly(ethylene oxide). The structures of the block copolymers were characterized by spectrometric, elemental and molecular weight analyses. The possibility of some graft polymerization occurring via free-radical extraction of a methylene hydrogen from the poly(ethylene oxide) was considered. Polymerization of vinyl chloride with an azonitrile initiator in the presence of a poly(ethylene oxide) yielded predominately homopolymer with some grafted poly(vinyl chloride).  相似文献   

15.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

16.
The dynamic light scattering results presented in this letter demonstrate that the clustering of poly(ethylene oxide) (PEO) can be observed even in ultrapure, freshly double‐distilled and filtered deionized water. It is confirmed that the filtration of solutions removes the clustering structure and that a steady‐state amount of PEO in clusters is reformed in filtered solutions within 24 h. Adding a drop of chloroform to unfiltered aqueous solutions of PEO temporarily alters the clustering structure, but it prevents the clustering of PEO in filtered solutions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 135–138, 2003  相似文献   

17.
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003  相似文献   

18.
Amphiphilic block copolymers containing β‐lactam groups on the polyisoprene block were synthesized from poly(isoprene‐b‐ethylene oxide) (IEO) diblock copolymer precursors, prepared by anionic polymerization. β‐Lactam functionalization was achieved via reaction of the polyisoprene (PI) block with chlorosulfonyl isocyanate and subsequent reduction. The resulting block copolymers were molecularly characterized by SEC, FTIR, and NMR spectroscopies and DSC. Functionalization was found to proceed in high yields, altering the solubility properties of the PI block and those of the functionalized diblocks. Hydrogen bond formation is assumed to be responsible for the decreased crystallinity of the poly(ethylene oxide) block (PEO) in the bulk state as indicated by DSC measurements. The self‐assembly behavior of the β‐lactam functionalized poly(isoprene‐b‐ethylene oxide) copolymers (LIEO) in aqueous solutions was studied by dynamic light scattering (DLS), static light scattering (SLS), fluorescence spectroscopy, and atomic force microscopy (AFM). Nearly spherical loose aggregates were formed by the LIEO block copolymers, having lower aggregation numbers and higher cmc values compared to the IEO precursors, as a result of the increased polarity of the β‐lactam rings incorporated in the PI blocks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 24–33, 2010  相似文献   

19.
Poly(ε‐caprolactone) films (TONE® 787) were irradiated by electron beam in air prior to grafting in aqueous solutions of acrylamide. The grafting kinetics and molecular weight of the grafted poly(acrylamide) chains were studied with irradiation doses between 2.5 and 20 Mrad and in the Mohr's salt concentration range of 0.0025–1 wt %. The grafting rate and yield were strongly dependent on the Mohr's salt concentration. By molecular weight analysis of grafted poly(acrylamide) chains, it was shown that the molecular weight is approximately proportional to the mass of the grafted PAAm. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1643–1649, 1999  相似文献   

20.
Ultrafine fibers of a laboratory‐synthesized new biodegradable poly(p‐dioxanone‐co‐L ‐lactide)‐block‐poly(ethylene glycol) copolymer were electrospun from solution and collected as a nonwoven mat. The structure and morphology of the electrospun membrane were investigated by scanning electron microscopy, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and a mercury porosimeter. Solutions of the copolymer, ranging in the lactide fraction from 60 to 80 mol % in copolymer composition, were readily electrospun at room temperature from solutions up to 20 wt % in methylene chloride. We demonstrate the ability to control the fiber diameter of the copolymer as a function of solution concentration with dimethylformamide as a cosolvent. DSC and WAXD results showed the relatively poor crystallinity of the electrospun copolymer fiber. Electrospun copolymer membrane was applied for the hydrolytic degradation in phosphate buffer solution (pH = 7.5) at 37 °C. Preliminary results of the hydrolytic degradation demonstrated the degradation rate of the electrospun membrane was slower than that of the corresponding copolymers of cast film. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1955–1964, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号