首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several synthetic strategies for the incorporation of supramolecular binding units into polymers are described. Specifically, terpyridine ligands have been introduced into polymers in such a way that they are distributed either randomly throughout the polymer backbone or at the chain end(s). Two terpyridine ligands form octahedral complexes with a variety of transition‐metal ions, each having different properties. Some general statements regarding metal complex stability are presented as well as a special case representing the selective construction of heteroleptic terpyridine complexes. This leads to a kind of LEGO system for connecting and disconnecting the polymer blocks via metal complexes. Metallo‐supramolecular block copolymers, graft copolymers, and chain‐extended polymers can be designed and prepared with the principles described. Once the design parameters have been derived, thorough control over the final material and its properties can be gained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1413–1427, 2003  相似文献   

2.
Two sets of water‐soluble poly(phenylene vinylene)s were synthesized and their optical properties were studied. The aqueous solubility of all these polymers is rendered by pendant sulfonate groups. One set of polymers (polymer I series) contains, in addition to the sulfonate pendants, dimethoxy substituents, while the other (polymer II series) contains oligo(ethylene oxide) side chains. Within each set, polymers containing lithium (Ia and IIa), sodium (Ib and IIb), and potassium (Ic and IIc) counter ions were prepared. The two sets of polymers showed different properties from physical appearance (fiber vs film) to thermal properties and to optical properties. It was found that set I polymers, with shorter side chains, exhibit stronger aggregation in aqueous solutions than set II polymers, which led to their lower fluorescence quantum yields and lower polymer‐to‐MV2+ quenching efficiencies. Within each set, the effect of counter ions on optical properties was noted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5123–5135, 2007  相似文献   

3.
Two comb‐like copolymers (BIMT and PMB) composed of N‐2‐thiazolylmethacrylamide (NTMA) and 2‐(1‐butylimidazolium‐3‐yl) ethyl methacrylate tetrafluoroborate (BIMA) were prepared by free radical polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The conversion of the monomers to copolymer has been confirmed by FTIR spectra and 1H NMR spectra. The metal (Ni2+, Nd3+) complexes of these two copolymers were prepared, and the magnetic behaviors of the complexes were studied. The coordinated complexes display three possible chelating structures, which lie on the nitrogen donor and oxygen donor ligands and the kinds of the metal ions. The bimetallic complexes (BIMT‐Nd‐Ni and PMB‐Nd‐Ni) were synthesized by using the different coordination sites of the polymers. The magnetic properties of the complexes show that different structures arising from the different preparations, the kinds and the contents of metal ions, and the state of the complexes can infect the exchange interaction between the metal ions and induce various magnetic phenomena. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5123–5132, 2008  相似文献   

4.
The effect of treating several commercially important emulsion polymers with different initiator systems was investigated. The initiator system producing highly reactive tert‐butoxyl radicals was able to cause polymer modification. This represented an opportunity to extend the range of properties achievable with a given emulsion polymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3744–3749, 2003  相似文献   

5.
Novel ABA‐type dumbbell‐like water‐soluble copolymers [D230(EI)4, D400(EI)4, and D400(EI)8] were synthesized by introducing ethylenimine (EI) groups into both sides of polyoxypropylenediamines via a simple in situ ethylamination of polyoxypropylenediamine with 2‐chloroethylamine hydrochloride. The structures of the resultant polymers were identified by Fourier transform infrared spectroscopy and 1H NMR. The percentages of primary, secondary, and tertiary amine present were determined by the potentiometric titration method after treatments with the appropriate chemicals of salicylaldehyde and acetic anhydride. The surface tension and solubilizing behavior of pyrene in the presence of these polymers in aqueous medium were also investigated, and the efficiency to reduce the surface tension and solubilizing behavior of pyrene depends on the attachments of EI to polymer backbone. The chelating properties of these polymers were examined quantitatively by ultraviolet–visible (UV–vis) spectroscopy in the presence of Cu2+ ions in aqueous solution, and continuous variation analysis revealed that the most stable complex is formed at the normality ratio of [N]/[Cu2+] = 3.0. UV–vis spectroscopy and transmission electron microscopy were used to evaluate the dumbbell‐like water‐soluble copolymer, D400(EI)8, as a stabilizer for preparing colloidal noble metal nanoparticles (Au and Pt) in aqueous solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1360–1370, 2003  相似文献   

6.
The ultrafiltration technique evaluates the interactions of water‐soluble polymers with metal ions. Aqueous solutions containing poly(sodium 4‐styrenesulfonate) (PSS), Cu(NO3)2, NaNO3, and iminodiacetic acid (IDAA) are examined by this technique. Cu2+ undergoes complex formation with IDAA and intreracts electrostatically with PSS. On the other hand, Na+ ions are in competition with Cu2+ for the electrostatic binding to PSS. The solutions are ultrafiltered keeping the ionic strength constant, so their compositions are allowed to change continuously. The concentration of Cu2+ bound to the polymer showed an exponential decay during filtration. The concentration of Cu2+ bound to the polymer before ultrafiltration is calculated by extrapolation. The concentration of the different species in solution is proposed as a function of the filtration factor. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2587–2593, 2002  相似文献   

7.
An appropriate definition of metallosupramolecular coordination polymer is offered, and the relationship between the polymer length, binding constant, and concentration is clarified. The possibility of influencing the binding constant with chelating ligands is discussed on the basis of examples of different Zn2+ complexes and their respective binding constants. In the main part, coordination polymers constructed by a supramolecular approach from different metal ions and pyridine–ligand systems are highlighted, and their applications as functional materials for artificial membrane and enzyme models, responsive gels, light‐harvesting systems, and organic light‐emitting diodes are discussed on the basis of individual examples. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4981–4995, 2005  相似文献   

8.
A new method for depositing metal onto a polymer surface has been developed in which the metal coating of polymer beads is performed with hydrazine functions as reducing agents on the surface of the polymer itself. In this study, glycidyl methacrylate–methyl methacrylate–divinyl benzene terpolymer was prepared as spherical beads with a suspension polymerization methodology. Beads of the polymer sample (210–420‐μm fraction) containing 3.4 mmol g?1 epoxy were treated with an excess of hydrazinium hydroxide to yield a polymer with 2.3 mmol g?1 hydrazine functions. The hydrazine functions on the polymer surfaces were efficient in metal reductions. Therefore, the modified bead polymer samples, when soaked in aqueous ammonia solutions of Ni(II), Ag(I), and Cu(II) ions (0.1 M), were covered rapidly by the corresponding zero‐valent metal ions. Metal deposition took place almost quantitatively (ca. 4.5 mmol/g of the polymer) within 60 min of the contact times. The accumulations of metal were followed visually and occurred only on the polymer beads. There was no evidence that the reaction occurred within the solution. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 748–754, 2002; DOI 10.1002/pola.10158  相似文献   

9.
A series of novel sulfonated polyimides (equivalent weight per sulfonic acid = 310–744 g/equiv) containing 10–70 mol % 1,5‐naphthylene moieties were synthesized as potential electrolyte materials for high‐temperature polymer electrolyte fuel cells. The polycondensation of 1,4,5,8‐naphthalene tetracarboxylic dianhydride, 4,4′‐diamino‐2,2′‐biphenyldisulfonic acid, and 1,5‐diaminonaphthalene gave the title polymer electrolytes. The polyimide electrolytes were high‐molecular‐weight (number‐average molecular weight = 36.0–350.7 × 103 and weight‐average molecular weight = 70.4–598.5 × 103) and formed flexible and tough films. The thermal properties (decomposition temperature > 260 °C, no glass‐transition temperature), stability to oxidation, and water absorption were analyzed and compared with those of perfluorosulfonic acid polymers. The polyimide containing 20 mol % 1,5‐naphthylene moieties showed higher proton conductivity (0.3 S cm?1) at 120 °C and 100% relative humidity than perfluorosulfonic acid polymers. The temperature and humidity dependence of the proton conductivity was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3901–3907, 2003  相似文献   

10.
A series of novel π-conjugated polymers containing ruthenium bipyridine complexes was synthesized by a cross-coupling reaction and characterized. These polymers exhibit absorption maxima around 330–350 nm (π-π*) and 460–500 nm metal-to-ligand charge transfer (MLCT), respectively. They are soluble in common organic solvents, and all polymers can be converted into transparent films. We investigated the influence of different donating and acceptor diethynylarenes of the ultraviolet-visible spectra. The oxidation potential, which was measured by cyclic- and square-wave voltametry, showed a typical Ru2+/3+ exhibited at 1.25 V versus the saturated calomel electrode. The polymers were further characterized with photoluminescence measurements. When excited at 442 nm ( 11a ), the polymer exhibited an emission peak at 690 nm. This peak was attributed to the MLCT states. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 722–732, 2004  相似文献   

11.
An oligo(p‐phenylene vinylene) that contains terpyridine ligands has been synthesized. Upon addition of metal ions, a π‐conjugated metallo polymer is formed in which the well‐defined character of oligomers and the material properties of polymers are combined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4020–4023, 2002  相似文献   

12.
Two segmented polyethylene oxides, SPEO‐3 and SPEO‐4, were prepared using a novel transetherification methodology. Their structures were confirmed by 1H and 13C NMR spectroscopy. The complexation of these SPEO's with alkali–metal ions in solution was investigated by 13C NMR spectroscopy. The mole‐fraction method was used to determine the complexation ratio of SPEO with LiClO4 at 25 °C, which showed that these formed 1:1 (polymer repeat unit/salt) complexes. The association constant, K, for the complex formation was calculated from the variation of the chemical shift values with salt concentration, using a standard nonlinear least‐square fitting procedure. The maximum change in chemical shift (Δδ) and the K values suggest that both SPEO‐3 and SPEO‐4 formed stronger complexes with lithium salts than with sodium salts. Unexpectedly, the K values were found to be different, when the variation of δ of different carbons was used in the fitting procedure. This suggests that several possible complexed species may be in equilibrium with the uncomplexed one. Structurally similar model compounds were also prepared and their complexation studies indicated that all of them also formed 1:1 complexes with Li salts. Interestingly, it was observed that the polymers gave higher K values suggesting the formation of more stable complexes in polymers when compared to the model analogues. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2635–2644, 2000  相似文献   

13.
Dye‐capped, hyperbranched, conjugated polymers were prepared by the modification of the peripheral bromo end groups of the hyperbranched polymer core with a palladium‐catalyzed Suzuki–Miyaura cross‐coupling reaction. The dye‐modified, hyperbranched polymers had high molecular weights and displayed good solubility in common organic solvents such as tetrahydrofuran, toluene, and chloroform. The structure of the dye‐modified, hyperbranched polymers was characterized by 1H and 13C NMR and elemental analysis. The thermal properties of five kinds of hyperbranched polymers were investigated with thermogravimetric analysis and differential scanning calorimetry. The optical properties of the dye‐capped, hyperbranched polymers were investigated with ultraviolet‐absorption and fluorescence spectroscopy. The hyperbranched structure could effectively reduce the aggregation of the peripheral dyes. The emission colors of the hyperbranched polymers could be easily tuned by end‐group modification. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 111–124, 2007  相似文献   

14.
We report the polymerization of rhenium‐containing methacrylates by atom transfer radical polymerization. The structure of the monomer was confirmed by X‐ray crystallography, which showed the bulkiness of the metal‐complex moiety. The rhenium complexes were polymerized in the presence of copper(I) bromide, 1,1,4,7,7‐pentamethyldiethylenetriamine, and methyl 2‐bromopropionate. They were copolymerized with methyl methacrylate in different monomer ratios. An ABA triblock copolymer was also synthesized with poly(methyl methacrylate) as the macroinitiator. When 2,2′‐bipyridine was used as the ligand for the copper catalyst in the polymerizations, it underwent a ligand exchange process with the iminopyridine ligand in the monomer. The neutral rhenium complex in the homopolymers and copolymers could be converted into ionic forms by the replacement of the chloride with an imidazole ligand, and the solubility of the resulting ionic polymers was greatly enhanced. The photosensitizing properties of the doped and undoped polymer films were investigated by the measurement of the photocurrent response under an externally applied electric field. The photoconductivities of the polymers were approximately 10?12–10?13 Ω?1 cm?1. The experimental quantum efficiencies were simulated with Onsager's theory, and they showed that the initial quantum yield and thermalization distance were 10?3 and 1.7 nm, respectively. Transmission electron microscopy showed that the rhenium complexes aggregated to form domains with dimensions of approximately 20–30 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1292–1308, 2005  相似文献   

15.
Glycine metal complexes were prepared by the reaction of glycine with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in 1?:?2 molar ratio. Thereafter their condensation polymerization was done with glutaraldehyde to obtain polymer metal complexes. All the synthesized polymer metal complexes were characterized by elemental analysis, FT-IR, 1H-NMR, and UV-Vis spectrometry, magnetic susceptibility, and thermogravimetric studies. The analytical data of all the polymers agreed with 1?:?1 molar ratio of metal complex to glutaraldehyde and magnetic moment data suggest that PGG–Mn(II), PGG–Co(II), PGG–Ni(II), and PGG–Cu(II) have an octahedral geometry around the metal atom, whereas the tetrahedral geometry was proposed for PGG–Zn(II) polymer. The PGG–Mn(II) and PGG–Cu(II) showed octahedral geometry. Thermal behavior of the polymer metal complexes was obtained at a heating rate of 10°C?min?1 under nitrogen atmosphere from 0°C to 800°C. The antimicrobial activities of synthesized polymers were investigated against Streptococcus aureus, Escherichia coli, Bacillus sphaericus, Salmonella sp. (Bacteria), Fusarium oryzae, Candida albicans, and Aspergillus niger (Yeast).  相似文献   

16.
Coordination polymers were obtained by the reaction of metal acetates, M(CH3COO)2·xH2O {where M = Mn(II), Co(II), Ni(II) and Cu(II)} with AFP ligand (AFP = 5,5'-(piperazine-1,4-diylbis(methylene))bis(2-aminobenzoic acid). The AFP ligand was prepared by the one-pot, two-step reaction of formaldehyde, 2-aminobenzoic acid, and piperazine. Structural and spectroscopic properties have been studied by elemental, spectral (FT-IR, 1H NMR, 13C NMR, and UV–vis), and thermogravimetric analysis. UV–vis spectra and magnetic moment values indicate that Mn(II), Co(II), and Ni(II) polymer–metal complexes are octahedral, while Cu(II) and Zn(II) polymer–metal complexes are distorted octahedral and tetrahedral, respectively. The analytical data confirmed that the coordination polymers of Mn(II), Co(II), Ni(II), and Cu(II) are coordinated with two water molecules, which are further supported by infrared spectra and thermogravimetric analysis data. The prepared polymer–metal complexes showed good antibacterial activities against all tested microorganisms; however, the AFP ligand was also found to be effective, but relatively less than their polymer–metal complexes. Along with antibacterial activity, all the polymer–metal complexes exhibit significant antifungal activity against most of the tested fungal strains. The results of antimicrobial activity reveals that the AFP–Cu(II) showed the highest antibacterial and antifungal activity than other polymer–metal complexes.  相似文献   

17.
We investigated the lasing properties of optically pumped polymer films. Amplified spontaneous emission (ASE) around 400 nm was observed in polymer films of polystyrene (PS) and poly(N‐vinylcarbazole) (PVK) doped up to 20% with the hole‐transporting organic molecule N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine (TPD). Thus, TPD‐based films are candidates for blue‐emitting organic diode lasers. Films containing several semiconducting organic molecules and polymers and rare‐earth complexes were also investigated. Energy transfer was observed in PVK films doped with various europium and samarium complexes. PS films containing the electron‐transporting organic molecule 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole and small amounts of TPD also showed energy transfer to the europium complexes, but not to the samarium ones. None of these films demonstrated ASE; therefore, they are not appropriate for lasing purposes. However, because rare‐earth ions have very sharp emission spectra, these materials are candidates for very monochromatic light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2706–2714, 2003  相似文献   

18.
Poly(N,N‐diethylacrylamide) (PDEA) possesses a lower critical solution temperature (LCST) in aqueous media. The solution properties of PDEA at various temperatures have been characterized with techniques such as rheology and dynamic light scattering. There is a decrease in the coil size before the phase transition due to a coil‐to‐globule transition. At the LCST, rheological and dynamic light scattering studies have also confirmed an aggregation phenomenon. This aggregation modifies the rheological properties of the polymer solutions. High frequencies hinder the phase‐transition process and reduce the LCST of the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1627–1637, 2003  相似文献   

19.
Fluorescence intensities of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) in H2SO4/H2O solutions were increased with increasing acid concentration. The intensities for P2VP were found to be six times stronger than that of P4VP. These differences were accounted for by the microenvironment of protonated pyridinium group. The ion binding properties of 4‐methylpyridine (4MP), P2VP, and P4VP were investigated in methanol using Tb3+ as a fluorescence probe. The increase of fluorescence intensity of Tb3+ in [P2VP–Tb3+] and [P4VP–Tb3+] complexes is due to both the replacement of the inner coordinated methanol molecules and ligand‐to‐metal energy transfer. The model compound 4MP was inefficient from this point of view, and the results were attributed to the polymer cooperative effect. Reduced viscosities of poly(vinylpyridine)s (PVP) in methanol were similar to nonionic polymers; however, when TbCl3 was added into the solution, the viscosities increased upon dilution. These results also indicated that PVP form complexes with Tb3+ in methanol. When diluted, the counterions Cl are allowed to dissociate and the charged polymer expands. Consequently, the solution's viscosity increases. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1341–1345, 1999  相似文献   

20.
The thermochemical transformation of electrostatically formed complexes of methyl orange (MO) with polycations containing primary amine groups such as ammonium salts afforded new polymers with a high concentration of covalently bound 4‐N,N‐dimethylaminoazobenzene groups in the side chain. Poly(allylamine hydrochloride) and poly(β‐aminoethylene acrylamide hydrochloride) were employed as support polycations for MO. The transformation of sulfonate–ammonium ion pairs into sulfonamide bonds, via heating at an elevated temperature, was supported by the polymer properties before and after the thermal treatment. The polymer structure changes were monitored with elemental analysis, Fourier transform infrared, 1H NMR, and ultraviolet–visible absorption spectroscopy, and thermogravimetric analysis. The spacer length between the backbone and azobenzene structures used as side chains strongly influenced the polymer properties before and after the heat‐induced reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5898–5908, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号