首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In an effort to decrease the electron‐injection barrier from the anode electrode, four copoly(aryl ether)s ( P1 – P4 ), consisting of alternating isolated electron‐transporting [2,5‐diphenyl‐1,3,4‐oxadiazole for P1 and P3 and 5,5′‐diphenyl‐2,2′‐p‐(2,5‐bishexyloxyphenylene)‐bis‐1,3,4‐oxadiazole for P2 and P4 ] and emitting chromophores (1,4‐distyryl‐2,5‐dihexyloxybenzene for P1 and P2 and 1,4‐distyryl‐2,5‐dihexylbenzene for P3 and P4 ), have been synthesized by the nucleophilic displacement reaction between bisfluoride and bisphenol monomers. They are basically amorphous materials with 5% weight‐loss temperature above 400 °C. The photoluminescence spectra and quantum yields of these copolymers are dependent on the compositions of the two isolated fluorophores. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of these copolymers have been estimated from their cyclic voltammograms. All the observations directly prove that the oxidation starts at the hole‐transporting segments. The electron affinity can be enhanced by the introduction of isolated electron‐transporting segments that lead to a charge‐injection balance. Single‐layer light‐emitting diodes (Al/ P1 – P4 /ITO glass) have been fabricated. P1 and P2 reveal blue electroluminescence, and P3 and P4 reveal purple‐blue electroluminescence. Moreover, the incorporation of bisoxadiazole units increases the electron affinity and reduces the turn‐on electric field better than one oxadiazole unit. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2765–2777, 2003  相似文献   

2.
Novel polyfluorene copolymers alternately having an 1,3,4‐oxadiazole unit in the main chain were prepared by both one‐step and two‐step methods for polyoxadiazole synthesis. They displayed highly efficient blue photoluminescence, the properties of which were affected by the extent of conjugation and the changes in the electron density by a side chain. An electrochemical analysis of the polymers using cyclic voltammetry suggested that they could be used as electron‐transport/hole‐blocking materials as well as blue emission materials for polymer light‐emitting diodes. A simple double‐layer device consisting of poly(N‐vinylcarbazole) as a hole‐transport layer and poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐((1,4‐bis(1,3,4‐oxadiazole)‐2,5‐di(2‐ethylhexyloxy)phenylene)‐5,5′‐diyl)] as an emission layer exhibited narrow blue electroluminescence with a maximum at 430 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1058–1068, 2004  相似文献   

3.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

4.
We have synthesized three new blue‐emitting poly(terfluorene) derivatives containing spirobifluorene and electron transport groups (quinoline or oxadiazole). The strategy is to connect the monomers via positions 2 and 2′ of spirobifluorene, which significantly restricts the interchain interaction and effectively adjusts the conjugation length. The incorporation of electron‐deficient units (quinoline or oxadiazole) into the positions 7 and 7′ of spirobifluorene tunes the emission band and reduces the lowest unoccupied molecular orbital energy level. Blue electroluminescence with narrow emission was achieved in the devices of ITO/PEDOT/polymer/Ca/Al. The maximum luminances are in the range of 102–235 cd/m2 and the maximum photometric efficiencies are in the range of 0.17–0.21 cd/A. All the polymers show good spectral stability, and are promising for use as stable blue‐emitting or electron‐transport/injection materials in polymeric light‐emitting diodes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4517–4529, 2005  相似文献   

5.
To investigate the effect of trifluoromethyl groups in enhancing electron affinity of aromatic oxadiazole and triazole chromophores, we prepared four new copoly(aryl ether)s ( P1 – P4 ) consisting of bis(3‐(trifluoromethyl) phenyl)‐1,3,4‐oxadiazole (ETO) or bis(3‐(trifluoromethyl)phenyl)‐4‐(4‐hexyloxyphenyl)‐4H‐1,2,4‐triazole (ETT) segments and hole‐transporting segments [2,5‐distyrylbenzene (HTB) or bis(styryl)fluorine (HTF)]. Molecular spectra (absorption and photoluminescence) and cyclic voltammetry were used to investigate their optical and electrochemical properties. The emissions of P1 – P4 are dominated by the hole‐transporting fluorophores with longer emissive wavelengths around 442–453 nm via efficient excitation energy transfer. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of P1 – P4 , estimated from electrochemical data, are ?5.15, ?5.18, ?5.30, ?5.27, ?3.39, ?3.49, ?3.36, and ?3.48 eV, respectively. The LUMO levels of ETO and ETT segments are significantly reduced to ?3.39~?3.36 eV and ?3.48~?3.49 eV, respectively, as compared with ?2.45 eV of P5 containing a 2,5‐diphenyl‐1,3,4‐oxadiazole segment. Moreover, electron and hole affinity can be enhanced simultaneously by introducing isolated hole‐ and electron‐transporting segments in the backbone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5900–5910, 2004  相似文献   

6.
Poly(p‐divinylene phenylene) derivatives bearing fluorene and carbazole units in the main chain and 5‐phenyl‐1,3,4‐oxadiazole moieties as side groups were prepared by the polycondensation of a newly synthesized monomer, [2‐(5′‐phenyl‐1′,3′,4′‐oxadiazole‐2′‐yl)‐1,4‐xylylene]bis(triphenyl phosphonium bromide) (OXAD), with 9,9‐dibutylfluorene‐2,2′‐dicarbaldehyde (DBFDA) and 9‐(2‐ethylhexyl)carbazole‐3,6‐dicarbaldehyde (EHCDA), which gave DBFDA–OXAD and EHCDA–OXAD. Analogues of these polymers without the side groups were also synthesized by the reaction of 1,4‐xylene bis(triphenyl phosphonium bromide) (PXYL) with the dicarbaldehydes, which gave DBFDA–PXYL and EHCDA–PXYL. All the synthesized polymers are soluble in organic solvents, giving films of good quality. The polymers are stable beyond 375 °C. They emit blue and blue‐green light, and their quantum yields are 38–79% in solution and 1–24% in film, depending on the fluorene and carbazole units as well as the side groups. In particular, the OXAD‐based polymers contain hole‐facilitating backbones and electron‐facilitating side groups, perhaps allowing these polymers to transport both holes and electrons. Overall, the synthesized polymers are potential candidates for the fabrication of light‐emitting devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1173–1183, 2002  相似文献   

7.
Two novel poly(p‐phenylene vinylene) polymers, which carried side substituents with cyano groups or 1,3,4‐oxadiazole, were synthesized by Heck coupling. They consisted of alternating conjugated segments and nonconjugated aliphatic spacers. The polymers had moderate molecular weights, were amorphous, and dissolved readily in tetrahydrofuran and halogenated organic solvents. They were stable up to approximately 340 °C in N2 and 290 °C in air, and the anaerobic char yield was around 60% at 800 °C. The polymer with cyano side groups emitted blue light in solutions and thin films with identical photoluminescence (PL) maximum at 450 nm; this supported the idea that chain interactions were hindered even in the solid state. The PL maximum of this polymer in thin films was blueshifted upon annealing at 120 °C, indicating a thermochromic effect as a result of conformational changes in the polymer backbone. The polymer containing side substituents with oxadiazole rings emitted blue light in solutions with a PL maximum at 474 nm and blue‐greenish light in thin films with a PL maximum at 511 nm. The PL quantum yields of the polymers in tetrahydrofuran were 0.13–0.24. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1768–1778, 2004  相似文献   

8.
Two, novel copoly(aryl ether)s ( P1 and P2 ) consisting of alternate, isolated electron‐ and hole‐transporting fluorophores were synthesized and characterized. Furthermore, we investigated the optical, photoluminescent (PL), and electrochemical properties of copoly(aryl ether)s P1 – P5 . The PL spectra of these polymers in film states showed maximum peaks around 420–498 nm. However, compared with the PL spectra of corresponding model compounds M1 – M5 , the emissions of P1 and P2 were compositions of the two isolated fluorophores, and that of P3 was dominated by the fluorophores with a longer emissive wavelength via the energy transfer. The formation of an interchain interaction in P4 and P5 was also observed. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of these copolymers were measured by cyclic voltammetry. Both the electron and hole affinities could be enhanced simultaneously because of the introduction of isolated hole‐transporting naphthalene (or fluorene) and electron‐transporting bis‐1,3,4‐oxadiazole segments. The single‐layer devices (Al/polymer/indium tin oxide) of P1 , P2 , and P4 revealed blue or blue‐green electroluminescence, but that of P3 emitted yellow light because of the excimer emission. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 883–893, 2004  相似文献   

9.
Three new poly(p‐phenylenevinylene)‐based polymers containing two 1,3,4‐oxadiazole moieties in the main chain per repeat unit were synthesized by Heck coupling. A single, double, or triple bond was introduced between the oxadiazoles to provide a means for modifying the polymer properties. The polymers were readily soluble in common organic solvents and showed Tg values lower than 50 °C. The color of the emissive light in both the solid state and the solution could be tuned by a change in the nature of the bond between the oxadiazole rings. The polymers emitted ultraviolet‐green light in solution with a photoluminescence (PL) emission maximum at 345–483 nm and blue‐green light at 458–542 nm in thin films. The PL quantum yields in solution were 0.36–0.43. The electrochemical properties are affected by the nature of the bond between the oxadiazoles as well. In polymers with a single bond between the oxadiazoles, a lower ionization potential was observed than in polymers with a double or triple bond. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3079–3090, 2005  相似文献   

10.
A series of conjugated blue‐light‐emitting copolymers, PTC‐1 , PTC‐2 , and PTC‐3, comprised different ratios of electron‐withdrawing segments (spirobifluorene substituted with cyanophenyl groups) and electron‐donating segments (tricarbazole‐triphenylamines), has been synthesized. The structures of these polymers were characterized and their thermal, photophysical, electrochemical, and electroluminescence properties were measured. Incorporation of rigid spirobifluorene units into the copolymers led to blue‐shifted absorption peaks in dilute toluene solution. Cyclic voltammetric measurement indicated the bandgaps of the polymers were in the range of 2.77–2.94 eV. It was found that increasing cyanophenyl‐spirobifluorene content in the polymer backbone lowered both the HOMO and LUMO energy levels of the copolymers, which was beneficial for electron injection/transporting in the polymer layer of the device. OLED device evaluation indicated that all the polymers emitted sky blue to deep blue light when the pure polymers were used as the emissive layers in the devices with a configuration of ITO/PEDOT:PSS/polymers/CsF/Ca/Al. The devices have been optimized by doping 30 wt % PBD into the polymer layers. Among the doped devices, PTC‐2 showed the best performance with the turn‐on voltage of 3.0 V, maximum brightness of 7257 cd/m2, maximum current efficiency of 1.76 cd/A, and CIE coordinates of (0.15, 0.14). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 292–301, 2010  相似文献   

11.
Two new poly(p‐phenylene vinylene) derivatives OX1‐PPV and OX2‐PPV bearing two 1,3,4‐oxadiazole rings per repeat unit and a fully conjugated backbone with solubilizing dodecyloxy side groups were synthesized and investigated. The amorphous conjugated polymers had glass‐transition temperature values of 60–75 °C and emitted intense blue or greenish‐blue light in solution with photoluminescence (PL) emission maxima at 379–492 nm and PL quantum yields of 0.41–0.52. In the solid state they emitted yellowish‐green light with PL emission maxima at 533–555 nm. Cyclic voltammetry showed that both conjugated polymers had reversible reduction and irreversible oxidation, making them n‐type materials. The electron affinity of OX2‐PPV was estimated as 2.85 eV whereas that of OX1‐PPV was 2.75 eV. Yellow electroluminescence (EL) was achieved from single‐layer light‐emitting diodes of OX2‐PPV with an EL emission maximum at 555 nm and a brightness of 70 cd/m2. Polymer OX2‐PPV, which was functionalized with 2,6‐bis(1,3,4‐oxadiazole‐2‐yl)pyridine, demonstrated sensitivity to various metal ions as a fluorescence‐mode chemosensor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2112–2123, 2004  相似文献   

12.
Mesogen‐jacketed liquid crystalline polymers (MJLCPs) with both electron‐transport oxadiazole and hole‐transport thiophene in the side chain were reported for their promising electroluminescent property. Monomers of 2,5‐bis{5‐[(4‐alkoxyphenyl)‐1,3,4‐oxadiazole]thiophen‐2‐yl}styrene (M‐Cm, m is the number of the carbons in the alkoxy groups, m = 8,10) were synthesized and confirmed by 1H‐NMR, mass spectrometry, and elemental analysis. The corresponding polymers were successfully obtained and characterized by thermal analysis, optical spectroscopy, cyclic voltammetry, electroluminescent analysis, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD). The polymers exhibited high decomposition temperatures reaching 382 °C and high Tg's reaching 184 °C. The absorption spectra indicated that both the monomers and polymers had little aggregation in film than that in solution, and the absorption spectra of the polymers showed an obvious blue‐shift compared with those of the monomers. Both the monomers and the polymers had blue‐green emission, and the photoluminescence spectra of the polymers in film suggested the formation of excimer or exciplex. The polymers showed lower HOMO energy levels and LUMO energy levels than those of the MJLCPs containing oxadiazole unit reported before. Electroluminescence study with the device configuration of ITO/PEDOT/PVK/polymer/TPBI/Ca/Ag showed maximum brightness and current efficiency of 541 cd/m2 and 0.10 cd/A, which proved that the introduction of directly connected electron‐ and hole‐transport units could greatly improve the EL property of side‐chain conjugated polymers. The phase structures of the polymers were confirmed to be smectic A phase through the results of PLM and WAXD. The annealed samples emitted polarized photoluminescence at room temperature, which indicated potential utility for practical applications in display. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1502–1515, 2010  相似文献   

13.
We have developed efficient white‐light‐emitting polymers through the incorporation of low‐bandgap orange‐light‐emitting benzoselenadiazole ( BSeD ) moieties into the backbone of a blue‐light‐emitting bipolar polyfluorene (PF) copolymer, which contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. By carefully controlling the concentrations of the low‐energy‐emitting species in the resulting copolymers, partial energy transfer from the blue‐fluorescent PF backbone to the orange‐fluorescent segments led to a single polymer emitting white light and exhibiting two balanced blue and orange emissions simultaneously. Efficient polymer light‐emitting devices prepared using this copolymer exhibited luminance efficiencies as high as 4.1 cd/A with color coordinates (0.30, 0.36) located in the white‐light region. Moreover, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study revealed that energy transfer from the PF backbone to the low‐bandgap segments, rather than charge trapping, was the main operating process involved in the electroluminescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2938–2946, 2007  相似文献   

14.
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001  相似文献   

15.
Three new poly(p‐phenylenevinylene) derivatives—PO, POD, and POP—with oxadiazole and pyridine rings along the main chain were synthesized via Heck coupling. The polymers were amorphous and dissolved readily in common organic solvents. They showed relatively low glass‐transition temperatures (up to 42 °C) and satisfactory thermal stability. Solutions of the polymers emitted blue‐greenish light with photoluminescence (PL) emission maxima around 460 nm and PL quantum yields of 0.28–0.49. Thin films of the polymers displayed PL emission maxima at 461–521 nm, and their tendency to form aggregates was significantly influenced by the chemical structure. Light‐emitting diodes with polymers PO and POP, with an indium tin oxide/poly(ethylenedioxythiophene) (PEDOT)/polymer/Ca configuration, emitted yellow and green light, respectively, and this could be attributed to excimer emission. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3212–3223, 2004  相似文献   

16.
New polyamides containing 1,3,4‐oxadiazole and naphthalene rings were prepared by low‐temperature solution polycondensation reaction of a new diamine containing preformed oxadiazole ring with various aromatic diacid chlorides. Elemental analysis, mass, infrared, and nuclear magnetic resonance spectroscopy were used to confirm the structure of the monomers and corresponding polymers. The thermal stability and glass transition temperatures of these poly(oxadiazole‐amide)s were measured and compared with those of related polymers. Their good solubility allows them to be processed in very thin films with smooth surfaces, without pinholes or cracks, when studied by atomic force microscopy. Upon irradiation with UV light the polymers showed photoluminescence maxima in the blue spectral range, both in solution and in solid state. Cyclic voltammetry (CV) was performed in order to obtain information about the electrochemical stability and reversibility of the redox processes of these polyamides. The highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels, and electrochemical and optical band gap values were calculated by using the results of CV and UV/vis, respectively, showing very good electron and hole injection and transport characteristics. These properties make the present polymers suitable for application in electroluminescent devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
We investigated the lasing properties of optically pumped polymer films. Amplified spontaneous emission (ASE) around 400 nm was observed in polymer films of polystyrene (PS) and poly(N‐vinylcarbazole) (PVK) doped up to 20% with the hole‐transporting organic molecule N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine (TPD). Thus, TPD‐based films are candidates for blue‐emitting organic diode lasers. Films containing several semiconducting organic molecules and polymers and rare‐earth complexes were also investigated. Energy transfer was observed in PVK films doped with various europium and samarium complexes. PS films containing the electron‐transporting organic molecule 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole and small amounts of TPD also showed energy transfer to the europium complexes, but not to the samarium ones. None of these films demonstrated ASE; therefore, they are not appropriate for lasing purposes. However, because rare‐earth ions have very sharp emission spectra, these materials are candidates for very monochromatic light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2706–2714, 2003  相似文献   

18.
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
A poly(p‐phenylenevinylene) derivative (PPV–TPA)] and a series of statistical copolyfluorenes (PF–TPA)] containing oxadiazole and triphenylamine segments along the main chain were synthesized by the Heck reaction and nickel‐mediated coupling, respectively. The PF–TPA copolyfluorenes with relatively low contents of oxadiazole and triphenylamine units were readily soluble in common organic solvents, whereas the other copolyfluorenes displayed lower solubility. PPV–TPA showed excellent solubility in solvents such as tetrahydrofuran (THF), dichloromethane, chloroform, and toluene. Thin films of the polymers absorbed light in the range of 375–396 nm and had optical band gaps of 2.76–2.98 eV. They emitted blue‐green light with a maximum at 414–522 nm. The fluorescence quantum yields in THF solutions were 0.08–0.53. The copolyfluorene PF–TPA thin films with high contents of oxadiazole and triphenylamine moieties emitted pure blue light that remained stable even after annealing at 150 °C for 4 h in air. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3556–3566, 2006  相似文献   

20.
A dendritic monomer with bipolar side groups containing dendritic carbazole and oxadiazole structures was synthesized by a convergent strategy. The homopolymer was synthesized through a conventional radical polymerization. The number‐average molecular weight determined by gel permeation chromatography was 40,000 g/mol. Its 5% weight loss temperature was 358 °C. Its photophysical properties were studied in solution and in film. The photoluminescent emission peak of the film was at 408 nm, which had a blue shift of 9 nm compared with that of the tetrahydrofuran solution. And there was an energy transfer from oxadiazole to carbazole. The highest occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) levels calculated from cyclic voltammetry data were ‐5.55 and ‐2.52 eV, respectively, and the band gap was 3.03 eV, which suggested that the polymer had both hole‐ and electron‐transporting capabilities. The efficiencies of the single‐layer device based on this homopolymer were much higher than those of the same‐generation homopolymer without the oxadiazole moiety. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号