首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aqueous colloidal manganese dioxide (MnO2) was prepared via titration by using potassium permanganate and sodium thiosulphate in aqueous neutral medium. The kinetics of oxidation of d-glucose onto the surface of colloidal MnO2 have been studied spectrophotometrically. The results show that the rate of initial stage (nonautocatalytic path) increases with increasing the [d-glucose], [H+], and temperature and also upon addition of nonionic surfactant Triton X-100 (TX-100), which indicates that the surfactant enhances the concentration of d-glucose at the surface of the colloidal MnO2. Hydrogen bonding interaction seemingly arises between –OH groups of d-glucose and oxygen of the ether linkages of polyoxyethylene chain of TX-100. A possible mechanism of the oxidative degradation of d-glucose is discussed in terms of d-glucose/TX-100 and colloidal MnO2 interaction.  相似文献   

2.
Kinetics of the title reaction has been studied spectrophotometrically in presence of perchloric acid at 30°C both in the absence and presence of Triton X-100 (TX-100). The reaction-time curves suggest the involvement of non-autocatalytic and autocatalytic reaction paths. The reaction follows first-order kinetics with respect to colloidal MnO2 and mandelic acid. The reaction has acid-dependent and acid-independent paths and, in the former case, the order is fractional in [H+]. Addition of nonionic surfactant (TX-100) catalysed the reaction which is explained on the basis of hydrogen bonding between the oxygen of polyoxyethylene chains of TX-100 and hydroxy groups of mandelic acid/colloidal MnO2. The kinetic data are rationalized in terms of model proposed by Tuncay et al. On the basis of the observed results, a possible mechanism has been proposed and discussed.  相似文献   

3.
The kinetics of the oxidative degradation of dipeptide glycyl–glycine (Gly-Gly) by water-soluble colloidal MnO2 in acidic medium has been studied by employing visible spectrophotometer in the aqueous and micellar media at 35 °C. To obtain the rate constants as functions of [Gly-Gly], [MnO2] and [HClO4], pseudo-first-order conditions were maintained in each kinetic run. The first-order-rate is observed with respect to [MnO2], whereas fractional-order-rates are determined in both [Gly-Gly] and [HClO4]. The addition of sodium pyrophosphate and sodium fluoride has composite effects (catalytic and inhibition). The reaction proceeds through the fast adsorption of Gly-Gly on the surface of the colloidal MnO2. The observed results are discussed in terms of Michaelis–Menten/Langmuir–Hinshelwood model. The Arrhenius and Eyring equations are found valid for the reaction over a range of temperatures and different activation parameters have been evaluated. A probable reaction mechanism, in agreement with the observed kinetic results, has been proposed and discussed. The influence of changes in the surfactant concentrations on the observed rate constant is also investigated and the reaction followed the same type of kinetic behavior in micellar media. The pseudo-first-order rate constant (kψ) is found to increase about two-fold with increase in [TX-100]. The catalytic effect of nonionic surfactant TX-100 is explained in terms of the mathematical model proposed by Tuncay et al.  相似文献   

4.
Summary The permanganate ion oxidation of PhCHO in HClO4 medium is first order in [MnO inf4 sup- ], but of complex order with respect to [aldehyde] as well as [H+]. The influence of substituents on the reaction rate and mechanism has also been studied in 40% (v/v) aqueous AcOH and convincing evidence favours an ester formation mechanism. Thermodynamic values associated with 11 intermediate ester formation and the activation parameters associated with the disproportionation steps involved have been evaluated.  相似文献   

5.
Degradation of polyoxyethylene chain of non-ionic surfactant (TritonX-100) by chromium(VI) has been studied spectrophotometrically under different experimental conditions. The reaction rate bears a first-order dependence on the [Cr(VI)] under pseudo-first-order conditions, [TritonX-100]  [Cr(VI)] in presence of 1.16 mol dm−3 perchloric acid. The observed rate constant (kobs) was 3.3 × 10−4 to 3.5 × 10−4 s−1 and the half-life (t1/2) was 33–35 min for chromium(VI). The effects of total [TritonX-100] and [H+] on the reaction rate were determined. Reducing nature of non-ionic TritonX-100 surfactant is found to be due to the presence of –OH group in the polyoxyethylene chain. It was observed that monomeric and non-ionic micelles of TritonX-100 were oxidized by chromium(VI). When [TritonX-100] was less than its critical micelle concentration (cmc) the kobs values increased from 0.76 × 10−4 to 1.5 × 10−4 s−1. As the [TritonX-100] was greater than the cmc, the kobs values increases from 2.1 × 10−4 to 8.2 × 10−4 s−1 in presence of constant [HClO4] (1.16 mol dm−3) at 40 °C. A comparison was made of the oxidative degradation rates of TritonX-100 with different metal ion oxidants. The order of the effectiveness of different oxidants was as follows: permanganate > diperiodatoargentate(III) > chromium(VI) > cerium(IV).  相似文献   

6.
Summary The kinetics of the reduction of octacyanomolybdate(V) anion by thiourea and thioacetamide have been studied in aqueous HClO4 at constant ionic strengthI=0.10 mol dm–3 (NaClO4). The rate of oxidation of these substrates by the oxidant shows a first order dependence in both the oxidant and the substrates and while the thiourea system exhibits an inverse first-order dependence on [H+] that of thioacetamide is found to be first-order in [H+]. The variation observed in [H+] dependences in these reactions is attributed to the nature of the thiourea in the pH range used in this study and the inductive effect of the methyl group in thioacetamide. A mechanistic interpretation of these observations is advanced.  相似文献   

7.
The kinetics of the reduction of water-soluble colloidal manganese dioxide by glycyl-leucine (Gly-Leu) has been investigated in the presence of perchloric acid both in aqueous as well as micellar media at 35 °C. The study was carried out as functions of [MnO2], [Gly-Leu] and [HClO4]. The first-order-rate is observed with respect to [MnO2], whereas fractional-order-rates are determined in both [Gly-Leu] and [HClO4]. Addition of sodium pyrophosphate and sodium fluoride enhanced the rate of the reaction. Further, the use of surfactant micelles is highlighted as, in favourable cases, the micelles help the redox reactions by bringing the reactants into a close proximity due to hydrogen bonding. While the ionic surfactants SDS and CTAB have not shown any effect on the reaction rate, the nonionic surfactant TX-100 has catalytic effect which is explained in terms of the mathematical model proposed by Tuncay et al. (1999). The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ΔH#, ΔS# and ΔG#) have been evaluated. Kinetic studies show that the redox reaction between MnO2 and Gly-Leu proceeds through a mechanism combining one- and two-electron pathways: Mn(IV)  Mn(III)  Mn(II) and Mn(IV)  Mn(II). On the basis of the observed results, a possible mechanism has been proposed and discussed.  相似文献   

8.
The effect of various chemicals on the cloud point (CP) of nonionic surfactant Triton X-405 (TX-405) in aqueous solutions has been investigated. In the measurements of cloud point temperatures, UV–visible spectrophotometer was used instead of visual observation. The values of CP for Triton X-405 could not be measured directly because TX-405 had an average number of oxyethylene units per molecule, p ≈ 35 and a CP > 100 °C. To avoid additional measurements under pressure, TX-405 had their CP lowered below the normal boiling point of their solutions by adding the salting-out, CP-lowering salts at various concentrations, measuring the depressed CP values and extrapolating them to zero salt concentration. The CP values decrease linearly with increasing concentration of salts at studied concentrations. The results showed that the addition of the simple salts and nonionic surfactant Triton X-114 (TX-114) which are infinitely miscible with water decreased the cloud point of the TX-405. In this study, the real CP values of TX-405 which are merely listed as >100 °C in the literature was found as 116 ± 1 °C in various samples. In the lyotropic series, it is expected that the effect of F > Cl > Br will be on the decrease in CP, because the ionic sizes increase along the group consequently decreasing the formal charge density on anion, thus lowering the attraction on anion and thereby lowering the attraction of water. The order of CP depression for the other anions is as follows: PO43− > SO42− > NO3 > Br. This means that electrolyte containing trivalent anions is more effective at salting-out the PEO chain than those containing divalent anions and monovalent anions. Cations effectiveness is present in the following order for change: Na+ > K+ > NH4+ because of their effect on water structure and their hydrophilicity. Overall the electrolytes and nonelectrolytes have a large amount of effect on CP of nonionic surfactant, because of their effect on water structure and their hydrophilicity.  相似文献   

9.
The kinetics of the degradation of metribuzin by water-soluble colloidal MnO2 in acidic medium (HClO4) were studied spectrophotometrically in the absence and presence of surfactants. The experiments were performed under pseudo-first-order reaction conditions in respect of MnO2. The degradation was observed to be of the first order in respect of MnO2 while of fractional order for both metribuzin and HClO4. The rate constant for the degradation of metribuzin was observed to decrease as the concentration of MnO2 increased. The anionic surfactant, sodium dodecyl sulphate (SDS), was observed to be ineffective whereas the non-ionic surfactant, Triton X-100 (TX-100), accelerated the reaction rate. However, the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), caused flocculation with oppositely-charged colloidal MnO2; hence further study was not possible. The catalytic effect of TX-100 was discussed in the light of the available mathematical model. The kinetic data were exploited to generate the various activation parameters for the oxidative degradation of metribuzin by colloidal MnO2 in the absence as well as the presence of the non-ionic surfactant, TX-100.  相似文献   

10.
Vanadium(V) oxidation of D-sorbitol shows a first-order dependency on the concentrations of D-sorbitol, vanadium(V), H+ and HSO4. These observations remain unaltered in the presence of externally added surfactants. The effects of the cationic surfactant (i.e., CPC), anionic surfactant (i.e., SDS) and neutral surfactant (i.e., TX-100) have been studied. CPC inhibits the reactions whereas SDS and TX-100 accelerate the reaction to different extents. SDS and TX-100 can be used as catalysts in the production of D-glucose from D-sorbitol.  相似文献   

11.
The effects of a substrate additive, H+ and solvents (water and acetone), on the micelle-catalyzed aquation of tris-(4,7-diphenyl-1, 10-phenanthroline)iron(II), Fe(Ph2Phen)3 2+, have been investigated using#Triton X-100 micelles. The k0 vs. [TX-100] profiles at fixed [H2O] are structured, exhibiting maxima. Catalytic factors of 46.6–171.7 are observed for 5.56×10−2≤[H2O] 55.60×10−2 mol dm−3. On the other hand, at fixed [H+], the k0 vs. [TX-100] exhibit broad maxima. The aquation reaction is inhibited by H+ and catalytic factors decrease rapidly and exponentially from 422.5 to 20.9 for 0.20×10−3≤[H+]≤2.00×10−3 mol dm−3. The aquation is found to be faster (ca. 160–1200 fold) in acetone than in the aqueous medium depending on the added [H2O]. These observations are rationalized on the basis of a proposed modified lamellar structure for the Triton X-100 (TX-100) micelles in which direct substitution of water molecules into the coordination sphere of the complex occurs.  相似文献   

12.
The kinetics of oxidation of N,N‐dimethylformamide by chromium(VI) has been studied spectrophotometrically in aqueous perchloric acid media at 20°C. The rate showed a first‐order dependence on both [Cr(VI)] and [DMF], and increased markedly with increasing [H+]. The order with respect to [HClO4] was found to lie between 1 and 2. The rate was found to be independent of ionic strength as well as of any inhibition effect of Mn(II). The formation of superoxochromium(III) ion was detected in an aerated solution of chromium(VI), DMF and HClO4. The proposed mechanism, involving two reaction pathways, leads to the rate law, rate = Ka1 [HCrO4] [DMF] (kI Ka2 [H+]²+kII[H+]). The first pathway, with rate constant kI, involves the formation of chromium(V) and a free radical. The second pathway, with rate constant kII, involves the formation of Cr(IV), CO2 and dimethylamine. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 409–415, 1999  相似文献   

13.
The kinetics of the oxidation of L-arginine by water-soluble form of colloidal manganese dioxide has been studied using visible spectrophotometry in aqueous as well as micellar media. To obtain the rate constants as functions of [L-arginine], [MnO2] and [HClO4], pseudo-first-order conditions are maintained in each kinetic run. The first-order-rate is observed with respect to [MnO2], whereas fractional-order-rates are determined in both [L-arginine] and [HClO4]. Addition of sodium pyrophosphate and sodium fluoride enhanced the rate of the reaction. The effect of externally added manganese(II) sulphate is complex. It is not possible to predict the exact dependence of the rate constant on manganese(II) concentration, which has a series of reactions with other reactants. The anionic surfactant SDS neither catalyzed nor inhibited the oxidation reaction, while in presence of cationic surfactant CTAB the reaction is not possible due to flocculation of reaction mixture. The reaction is catalyzed by the nonionic surfactant TX-100 which is explained in terms of the mathematical model proposed by Tuncay et al. Activation parameters have been evaluated using Arrhenius and Eyring equations. On the basis of observed kinetic results, a probable mechanism for the reaction has been proposed which corresponds to fast adsorption of the reductant and hydrogen ion on the surface of colloidal MnO2.  相似文献   

14.
Kinetics of oxidation of acidic amino acids (glutamic acid (Glu) and aspartic acid (Asp)) by sodium N-bromobenzenesulphonamide (bromamine-B or BAB) has been carried out in aqueous HClO4 medium at 30°C. The rate shows first-order dependence each on [BAB]o and [amino acid]o and inverse first-order on [H+]. At [H+] > 0·60 mol dm−3, the rate levelled off indicating zero-order dependence on [H+] and, under these conditions, the rate has fractional order dependence on [amino acid]. Succinic and malonic acids have been identified as the products. Variation of ionic strength and addition of the reaction product benzenesulphonamide or halide ions had no significant effect on the reaction rate. There is positive effect of dielectric constant of the solvent. Proton inventory studies in H2O-D2O mixtures showed the involvement of a single exchangeable proton of the OH ion in the transition state. Kinetic investigations have revealed that the order of reactivity is Asp > Glu. The rate laws proposed and derived in agreement with experimental results are discussed.  相似文献   

15.
The kinetics of oxidation of PdII by CeIV have been studied spectrophotometrically in HClO4 media at 40 °C. The reaction is first order each in [CeIV] and [PdII] at constant [H+]. Increasing [H+] accelerates the reaction rate with fractional order in [H+]. The initially added products, palladium(IV) and cerium(III) do not have any significant effect on the reaction rate. At constant acidity, increasing the added chloride concentration enhances the rate of reaction. H3Ce(SO4)4 and PdCl42− are the active species of oxidant and reductant respectively. The possible mechanisms are proposed and the reaction constants involved have been determined.  相似文献   

16.
Summary The reactivities of - and -glycerophosphates towards MnO 4 in HClO4 medium have been examined. The reactions between glycerophosphates and MnO 4 are first order with respect to [glycerophosphate], [MnO 4 ] and [H+]. There is no evidence for cleavage of the C–O–P bond rather than the terminal –CH2OH group being oxidized to the respective phosphoglyceraldehyde.  相似文献   

17.
Polymerization of methyl acrylate in HClO4 and HNO3 was studied in the temperature range 10–15°C. The kinetics of the polymerization were found to be very simple, involving initiation and termination by cobaltic ions. Kinetic studies on polymerization of acrylonitrile in HClO4 and HNO3 revealed that water oxidation, and monomer oxidation were side reactions as in the case of methyl methacrylate. Experimental evidence favored the simultaneous initiation by Co3+ and CoOH2+ species. In H2SO4, certain unusual features were encountered. At low [Co3+], linear termination as well as termination by mutual combination occurred. Another interesting aspect was that CoSO4+ initiated at low [Co3+]. This was unlike the case of other monomers in H2SO4. The rates of polymerization and rates of cobaltic ion disappearance were measured with respect to changes in [M], [Co3+], [H+], temperature, etc. The various rate constants were evaluated.  相似文献   

18.
Kinetics of oxidation of DL-malic acid by water soluble colloidal MnO2 (prepared from potassium permanganate and sodium thiosulfate solutions) have been studied spectrophotometrically in the absence and presence of nonionic Triton X-100 surfactant. The reaction is autocatalytic and manganese(II) (reduction product of the colloidal MnO2) may be the autocatalyst. The order of the reaction is first in colloidal [MnO2] as well as in [malic acid] both in the absence and presence of the surfactant. The reaction has acid-dependent and acid-independent paths and, in the former case, the order is fractional in [H+]. The effect of externally added manganese(II) is complex. The results show that the rate constant increases as the manganese(II) concentration is increased. It is not possible to predict the exact dependence of the rate constants on manganese(II) concentration, which has a series of reactions with other reactants. In the presence of TX-100, the observed effect on k is catalytic up to a certain [TX-100]; thereafter, an inhibitory effect follows. The catalytic effect is explained in terms of the mathematical model proposed by Tuncay et al. (in Colloids Surf A Physicochem Eng Aspects 149:279 3). Activation parameters associated with the observed rate constants (kobs/k) have also been evaluated and discussed.  相似文献   

19.
Summary The kinetics of iridium(III)-catalysed oxidation of 1,2-ethanediol and 1,4-butanediol by N-bromoacetamide (NBA) in HClO4 in the presence of [Hg(OAc)2] as a scavenger for Br have been investigated. The reactions are zero-order with respect to both diols, and first-order in NBA at low NBA concentrations, tending to zero order at high concentrations. The order in IrIII decreases from unity to zero at high iridium(III) concentrations. A positive effect on the oxidation rate is observed for [H+] and [HgII] whereas a negative effect is observed for acetamide and [Cl]. Ionic strength does not influence the oxidation rate. (H2OBr)+ is postulated as the oxidizing species. A mechanism consistent with the observed kinetic data is proposed.  相似文献   

20.
Kinetics of oxidation of pantothenic acid (PA) by sodium N‐chloro‐p‐toluenesulfonamide or chloramine‐T (CAT) in the presence of HClO4 and NaOH (catalyzed by OsO4) has been investigated at 313 K. The stoichiometry and oxidation products are same in both media; however, their kinetic patterns were found to be different. In acid medium, the rate shows first‐order dependence on [CAT]o, fractional‐order dependence on [PA]o, and inverse fractional‐order on [H+]. In alkaline medium, the rate shows first‐order dependence each on [CAT]o and [PA]o and fractional‐order dependence on each of [OH?] and [OsO4]. Effects of added p‐toluenesulfonamide and halide ions, varying ionic strength, and dielectric constant of medium as well as solvent isotope on the rate of reaction have been investigated. Activation parameters were evaluated, and the reaction constants involved in the mechanisms have been computed. The proposed mechanisms and the derived rate laws are consistent with the observed kinetics. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 201–210, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号