首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved PL (TRPL) at various temperatures. The fast red-shift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(−t/τ)β], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed QDs or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent β on temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered QDs. Furthermore, the localized states are found to have 0D density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature.  相似文献   

2.
We have measured the optical properties of wurtzite InN nanocolumns and film by photoluminescence (PL) measurements at temperatures from 5 to 300 K and analyzed the PL spectra by fitting with the free-electron recombination bound (FERB) model. For the top-linked InN nanocolumns, we observed strong PL intensity compared to the InN film sample. The PL spectra were asymmetrical with low-energy tails and a red-shift of the PL peak energy position was observed with increasing temperature. However, for the separated InN nanocolumns, we observed weak PL intensity and symmetrical PL spectra. Analyzing the spectra shape of the top-linked InN nanocolumns at 5 K using the FERB model, we evaluated the intrinsic bandgap energy and carrier density of InN nanocolumns to be 0.69 eV and 2.5×1017 cm−3, respectively.  相似文献   

3.
We have measured photoluminescence (PL) spectrum of (1) thermal-annealed SrTiO3/Si thin film and undoped SrTiO3 single crystal; (2) SrTiO3 single crystal irradiated by high energy (3 MeV) proton, deuterium, and He ion beams and (3) SrTiO3 single crystal irradiated by low energy (60 keV) H+ and C ions. Two PL emissions are induced in (1) and (2) at visible frequencies 3 and 2.45 eV, while another PL peak is induced at 2 eV in (3). When compared with our previous PL experiments on high-temperature annealed SrTiO3/SiO2/Si thin film and 3 MeV proton (H+) irradiated STO single crystal, these results confirm that the three PL emissions with blue (3 eV), green (2.45 eV), and red-orange (2 eV) frequencies originate indeed from SrTiO3. These primary-color PL effect induced at room-temperature makes STO a strong candidate material for future oxide-based optoelectronic application.  相似文献   

4.
Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO2) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar+ laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 °C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures.  相似文献   

5.
Photoluminescence (PL) properties of Si nanoparticles (Si-np) produced by irradiating the Si wafer with nanosecond laser pulses at 532, 683 and 1064 nm are studied. Si-np are found to be deposited in a doughnut shape around the irradiated spot. The irradiation wavelength is found to be the main cause for the particle size variation. Exposure of the freshly prepared Si-np to air for different periods of time leads to increased PL intensity reaching saturation after few days. The PL spectrum shows two well resolved peaks around 435 nm (2.85 eV) and 441 nm (2.81 eV) within an hour of exposure of the freshly prepared samples to air with broadening of the emission spectrum on further exposure to air. Possible mechanism of particle size variation and PL emission are discussed.  相似文献   

6.
In this work, Co-doped ZnO nanofibers have been fabricated successfully by an electrospinning technique. The as-prepared nanofibers are characterized by themogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectra and photoluminescence spectroscopy (PL). Results have showed that a wurtzite ZnO nanofibers were obtained and the PL spectrum showed a red-shift by 10 nm due to narrowing of the ZnO band gap (∼3.29 eV) as a result of Co doping. Meanwhile, Raman scattering spectra exhibited an unusual peak at 540 cm−1.  相似文献   

7.
The photoluminescence (PL) properties of our silica wires were investigated with PL, PL excitation and PL decay. A high brightness photoluminescence band at 2.8 eV with a shoulder around 3.0 eV was observed in our silica wires. Two PL excitation bands for the 2.8 eV emission were observed at 4.77 and 3.37 eV. The 3.37 eV excitation band is reported for the first time. The characteristic of the blue PL in our silica wires was different from that of the well-known 2.7 eV PL in bulk silica material, suggesting a negation of previous attribution of blue emission in silica nanowires. The mechanism of the PL was also discussed.  相似文献   

8.
The infrared (IR) photoluminescence (PL) emission of spark-processed silicon (sp-Si) was investigated. A broad and strong room temperature PL peak in the 945 nm (1.31 eV) spectral range was observed when sp-Si was excited with an argon laser. This peak is different from the PL commonly reported for anodically etched porous silicon and other silicon-based materials. The PL intensity increases substantially after annealing sp-Si between 350 and 500 °C in air after which it decreases again. The PL wavelength is observed to peak at 1010 nm by annealing sp-Si near 450 °C. It was further found that the most efficient PL occurs for a Si/O ratio of 0.3, for a small spark gap of about 1 mm, and for spark-processing times in the 15-60 min range.A model for the IR PL is proposed which mirrors that for visible PL. Specifically, it is proposed that the electrons which have been pumped by the laser from the ground state into a broad quasi-absorption band (or closely spaced absorption lines between 1.7 and 2.3 eV) revert back to lower IR levels at 1.31 eV by a non-radiative transition from where they revert radiatively to the ground state by emitting the observed 945 nm light.  相似文献   

9.
Time-resolved photoluminescence (TRPL) of red mercuric iodide single crystal is measured at low temperatures and its two-photon luminescence is measured at room temperature. Sharp near band-gap luminescence is observed around 530 nm and was ascribed to radiative annihilation of free and bound excitons; the phonon replica of exciton luminescence are found between 533 and 540 nm at low temperatures. TRPL experiment reveals that near band-gap luminescence comprises fast and slow decay components and shows the different relaxation processes between free and bound exciton annihilation. Luminescence of bound excitons steeply lowers with increasing temperature and disappears about 40 K. A luminescence tail band is observed around 540 nm that is ascribed to defects in the anion sublattice. The temporal behavior of the tail band is described by rate equations very well. A broad luminescent band appears at 630 nm. The decay curves suggest that the luminescence is ascribed to the radiative recombination of donor-acceptor pairs and there are two kinds of mechanisms to control the decay. At room temperature, a luminescent band appears at the band-gap region, which shows the band-gap at room temperature is about 2.125 eV.  相似文献   

10.
Photoluminescence of CdS nanoparticles embedded in a starch matrix   总被引:1,自引:0,他引:1  
CdS nanoparticles were synthesized by precipitation in aqueous solution using starch as the capping molecule, and the effect of the pH of the solution on the optical absorption, photoluminescence, and size of the nanoparticles was studied. Absorption spectra, obtained by photoacoustic spectroscopy, indicated that the band gap energy of the crystalline nanoparticles decreased from 2.68 eV down to 2.48 eV by increasing the pH of the solution from 9 up to 14. The X-ray diffraction analysis revealed that the CdS nanoparticles were of zinc blende structure, and that the particle size increased from 1.35 nm up to 2.45 nm with increasing pH. In addition, temperature-dependent photoluminescence (PL) measurements of the capped material showed a blue-shift of the emission peak for temperatures higher than 150 K, indicating the influence of starch on the formation of defect levels on the surface of the CdS nanoparticles.  相似文献   

11.
Nanostructured porous Si-based films produced by pulsed laser ablation (PLA) from a silicon target in residual helium gas can exhibit both size-dependent (1.6-3.2 eV) and fixed photoluminescent (PL) bands (1.6 and 2.2 eV) with their relative contributions depending on the film porosity. We study the influence of prolonged oxidation in ambient air on properties of the fixed PL bands, associated with oxidation phenomena, and their correlation with structural properties of the films. In addition, we propose a model describing the appearance of surface radiation states for oxidized films of various porosities. Our experiments and numerical simulations led to a conclusion that the 1.6 eV PL is due to a mechanism involving a recombination through the interfacial layer between Si core and an upper oxide of nanocrystals. This mechanism gives the optimal porosity of 73% for the most efficient production of 1.6 eV PL centers that is in excellent agreement with our experimental results.  相似文献   

12.
A. Sulyok  M. Menyhard 《Surface science》2007,601(8):1857-1861
The steady-state surface compositions of the polar (O and Zn terminated) faces of ZnO{0 0 0 1} produced by low energy (0.3-2 keV) Ar+ ion bombardment were studied by Auger electron spectroscopy and electron energy loss spectroscopy. The alterations produced by the ion bombardment using different ion energies were monitored by calculating the intensity ratios of the low and high energy Zn Auger peaks (59 eV and 994 eV, respectively); Zn and O Auger peaks (59 eV and 510 eV, respectively). Based on the dependence of these ratios on the ion energy and termination of the surface, we could conclude that the stability of the Zn face is higher against the low energy argon ion bombardment-induced compositional changes than that of the O face.  相似文献   

13.
Spatially localized excitons are observed in InGaN quantum well structures at 4 K by using a micro-photoluminescence (PL) technique. By combining PL and nano-lithographic techniques, we are able to detect PL signals with a 0.2 μm spatial resolution. A sharp PL line (linewidth of <0.4 meV) is clearly obtained, which originates from a single localized exciton induced by a quantum dot like a local potential minimum position. Sharp PL spectra detected in three QWs with different indium compositions confirm that there are exciton localization effects in quantum wells in the blue-green (about 2.60 eV, 477 nm) to purple (about 3.05 eV, 406 nm) regions.  相似文献   

14.
One new three-arm star-shaped polymer was synthesized by the core-first way using atom transfer radical polymerization (ATRP) method. This polymer contained charged iridium (Ir) complex as the luminescent core and 2-(carbazol-9-yl) ethyl methacrylate as the arm repeat unit. Its structure was confirmed by elemental analysis, nuclear magnet resonance (NMR) and photoluminescence (PL). The polymer has a relatively low polydispersity index (PDI) of 1.30 with excellent thermal stability. It also possesses significant redox behavior with a HOMO level of −5.21 eV, which will be of benefit to hole-injection. The PL spectrum of the polymer in film state has a stable peak at 565 nm, however, its PL in dichloromethane solution varied with its concentration. It demonstrated effective energy transfer from the arm unit to the core in the host-guest system. This indicated that when the length of the arm is properly designed, highly luminescent materials can be achieved with emission at 565 nm.  相似文献   

15.
ZnO nanobelts had been synthesized by a simple method of thermal evaporation of Zn powders. The morphology, structure and photoluminescence (PL) properties of ZnO nanobelts were studied. The nanobelts had a single-crystal hexagonal structure and grew along the (0 0 0 1) direction with several micrometers long, 50-400 nm wide and 30-100 nm thick. Photoluminescence measurement showed that the nanobelts had an intensive near-band ultraviolet emission at about 3.3 eV. The obtained experimental data suggest that the ultraviolet PL in ZnO nanobelts originates from the recombination of the acceptor-bound excitons and free extions at room temperature. The absence of the deep level emission indicated very low impurity concentration and high crystalline quality in the ZnO nanobelts. Large-area growth and high quality indicate that the prepared ZnO nanobelts have potential application in optoelectronic devices.  相似文献   

16.
The emission at around 3.31 eV (A-line) from three types of ZnO nanocrystals with different particle sizes (10-1000 nm) was studied. The photoluminescence (PL) measurements were performed under different excitation densities and at different temperatures. The A-line emission exhibited a strong dependence on temperature and excitation power density. With increasing excitation density and temperature overlapping of the closely spaced first longitudinal optical (LO) phonon replica of free excitons by the A-line emission was observed.  相似文献   

17.
ZnO nanoparticles (NPs) have been successfully synthesized by the simple solution method at low temperature. The effects of annealing temperature on the structure and optical properties of ZnO NPs were investigated in detail by X-ray diffraction, transmission electron microscopy (TEM), ultraviolet–visible (UV–vis) spectroscopy and photoluminescence (PL) measurements. As the annealing temperature was increased above 180 °C the particles morphology evolved from spherical to hexagonal shape, indicating that the average particle size increased from 11 nm to 87 nm. The UV-vis and PL spectra showed a red-shift from 3.62 to 3.33 eV when the annealing temperature was increased.  相似文献   

18.
The optical properties of ZnO grown on (1 0 0) GaAs substrate using metalorganic chemical vapor deposition are investigated by photoluminescence (PL) spectroscopy. Postgrowth annealing in nitrogen and oxygen was performed for different times and temperatures in order to incorporate As from the substrate into the ZnO thin films. The PL spectra of the samples annealed in different ambients reveal that the effect of As diffusion into the ZnO thin films is more pronounced when the annealing is performed in oxygen at 550 °C. The 11 K PL spectra show the appearance of a transition at ∼3.35 eV after annealing in oxygen at 550 °C for 1 h. A further increase in the annealing temperature leads to the disappearance of this line, while for annealing times longer than 2 h at 550 °C, it is no longer prominent. The increase in intensity of this new transition is also accompanied by the enhancement of radiative centers related to structural defects, such as the stacking fault-related transition at 3.31 eV and the Y-line. Temperature dependent PL illustrates the excitonic nature of the new transition at ∼3.35 eV, which is therefore assigned to (A0, X) transition, where the acceptor is possibly the 2VZn-AsZn complex, with an activation energy EA in the range of 160-240 meV. Furthermore, the enhancement of the radiative centers related to structural defects is regarded as evidence that As atoms tend to segregate in the vicinity of structural defects to relieve local strain.  相似文献   

19.
Lead sulfide (PbS) nanocrystals were formed by using Pb nanowires reacted with hydrogen sulfide (H2S) gas. The structure and composition of the as-prepared nanocrystals were confirmed by scanning electron microscopy, X-ray diffraction, transmission electron microscope and energy dispersive X-ray spectroscopy. According to the differential scanning calorimeter analysis, the PbS nanocrystals in a cubic structure owned excellent thermal stability. Furthermore, the optical properties including photoluminescence (PL) and Raman scatting spectrum were also measured. The PL emission measurement of the PbS nanocrystal showed that there was an orange-red emission peak located around 655 nm. A significant quantum confinement effect made the energy gap of PbS produce a blue shift from 0.41 eV to 1.9 eV.  相似文献   

20.
Y.F. Xu 《Applied Surface Science》2006,252(6):2328-2333
In situ photoluminescence spectroscopy (PL) measurements of tris(8-hydroxyquinoline) aluminum (Alq3) film were carried out. Upon deposition of Alq3 on the glass substrate, the PL intensity changes dramatically, while the peak position of Alq3 emission shows a sharp red-shift from 524 nm at the initial deposition of Alq3, and tends to a saturation value of 536 nm for the film thickness range from 2 to 500 nm. This red-shift is associated with the change from the 2D to 3D exciton state with increasing Alq3 film thickness. Temperature dependent PL spectra of Alq3 films showed, besides the changes in the PL intensity, clearly a blue-shift of Alq3 emission about 9 nm for the film annealing up to 150 °C, while no any shift of Alq3 emission was observed for the film annealing below 130 °C. Both changes in PL intensity, and especially in the peak position of Alq3 emission were attributed to crystallization (thermal) effect of Alq3 film upon annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号