首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Femtosecond optical pulse is used to generate narrow-band terahertz pulses depending on a quasi-phase-matched condition in periodically poled lithium niobate (PPLN) and stoichiometric lithium tantalate (PPSLT) crystals by difference frequency generation. The origin of narrow-band THz generation proved that the two frequency components of the fs pulse contribute to the frequency mixing. By cryogenic cooling, the absorption of THz waves in the crystal is significantly reduced which results in efficient THz generation. Simultaneously generated forward and backward THz pulses were 1.38 and 0.65 THz with as narrow as the bandwidth of 32 GHz in the PPSLT sample. Temperature dependence of the generated THz waveforms had good agreement with the simulation result using one dimensional plane-wave propagation model.  相似文献   

2.
An ultra-stable visible laser source (VLS) was generated by the second harmonic of a selectively injection-locked distributed feedback (DFB) laser from an optical frequency comb with acetylene-stabilized laser seeding. For the second-harmonic generation (SHG) of the injection-locked DFB laser, we used periodically poled lithium niobate (PPLN) crystal and generated the VLS at a region of 771 nm, which was discretely locked to a spacing of 25 GHz within the PPLN bandwidth (180 GHz). The frequency stability of this source was estimated to be 1.1 × 10− 12 with an average time of 1 s.  相似文献   

3.
We present a novel source for continuous terahertz (THz) wave generation using an organic ionic salt, 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST). THz waves are generated based on difference frequency generation (DFG) in the device. Phase matching condition and THz generation between 1.3 THz and 2.7 THz, for optical pump around 1.6 μm, are investigated. Our calculations predict that the device produces a relatively high THz output power of 11.07 μW from a 4 cm long waveguide at 2 THz.  相似文献   

4.
A noncascading terahertz (THz) wave parametric oscillator synchronously pumped by a mode-locked picosecond Ti:sapphire laser whose average power was less than 1 W was demonstrated with a noncollinear phase-matching MgO:LiNbO3 crystal in an external enhancement cavity doubly resonant for both pump (780 nm) and signal (781-784 nm) waves. In the external cavity, in which the pump wave enhanced so as to reduce the pumping threshold of parametric processes, the signal wave could also resonate and thus be enhanced simultaneously, resulting in a THz wave output at approximately 0.9 THz as the idler wave. The novel dual enhancement of pump and signal waves reduced the threshold pumping intensity to approximately 50 MW/cm2, which was much lower than that of a conventional externally pumped THz wave parametric oscillator with a crystal.  相似文献   

5.
Coherent terahertz pulses have been generated at a range of 236.3-1104.5 μm (0.27-1.3 THz) by one CO2 laser with dual-wavelength output based on collinearly phase-matched different frequency generation (DFG) in a GaSe crystal. This source has the advantages of compact and simplicity for tuning. The output power of the THz pulse and phase-matching conditions were investigated. The maximum single pulse energy of 11 nJ was generated at a frequency of 1.23 THz (243.6 μm), corresponding to a peak output power 182 mW.  相似文献   

6.
A compact, walk-off compensated dual-wavelength KTP OPO near the degenerate point of 2.128 μm pumped by a Nd:YAG pulsed laser is employed as the pump for terahertz (THz) source based on difference frequency generation (DFG) in a GaSe crystal. Coherent THz radiation that is continuously tunable in the range of 81-1617 μm (0.186-3.7 THz) is achieved. An enhancement of 76.7% in average for the THz energies at different wavelengths is realized using the walk-off compensated KTP OPO than the common one. Using a 8 mm-long GaSe crystal, the maximum output THz pulse energy is 48.9 nJ with the peak power of 11 W, corresponding to the energy conversion efficiency of 5.4 × 10− 6 and the photon conversion efficiency of about 0.09%.  相似文献   

7.
We demonstrate, for the first time, a tunable dual-wavelength terahertz wave power splitter based on the multimode interference effect and self-imaging principle in 1 × 2 × 2 photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results demonstrate that the power splitter not only split the input power into output1 and output2 branches with equal power at frequency of 1.09 THz, but also split the power into output3 and output4 branches symmetrically at frequency of 1.20 THz. Furthermore, for the frequency of 1.09 THz, the input terahertz wave power can be split into output1 and output2 branches with an arbitrary ratio by tuning the refractive index of the tuning rods.  相似文献   

8.
In this paper, we design a THz wave polarizer based on a periodic symmetrical thin film structure, which operates over a broadband THz frequency region (1.0–2.0 THz) and over an effective wide range of incident THz wave (72–84°). The spectral performance of this structure is characterized by transfer matrix method calculations. Results of simulations show that the polarizer is highly transmittance for TE polarized THz wave as well as highly reflecting for TM polarized THz wave.  相似文献   

9.
Surface-emitted terahertz- (THz-) wave generation by difference-frequency mixing with ridge-shaped periodically poled lithium niobate (PPLN) was demonstrated. The PPLN had a ridge height of 300 microm, a thickness of 20 microm, and an interaction length of 35 mm. The ridge behaves as a slab waveguide for optical pump beams. The PPLN gives rise to THz waves in opposite directions, perpendicular to the pump-beam direction. Reflecting the THz wave on one side and overlapping it with the THz wave on the other side increased the total THz-wave intensity approximately 2.7 times compared with that without reflection and mixing.  相似文献   

10.
Sasaki Y  Avetisyan Y  Yokoyama H  Ito H 《Optics letters》2005,30(21):2927-2929
We report on the demonstration of surface-emitted terahertz- (THz-) wave difference-frequency generation from two-dimensional (2D) periodically poled lithium niobate (PPLN). The two orthogonal periodic structures individually compensate for both the phase mismatch of the launched lasers and the generated THz wave. Tunable 1.5-1.8 THz wave generation with a bandwidth of 10-GHz was obtained by use of two 2D PPLN crystals. We also confirmed that THz waves were simultaneously generated into two opposite directions, which suggests the possibility of higher THz-wave output power.  相似文献   

11.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

12.
We report on the development of a laser source in the mid-infrared spectral region based on difference-frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal. Continuously tunable coherent radiation from 2.75 to 4.78 μm was produced by optical parametric interaction between a diode-pumped monolithic continuous-wave (CW) Nd:YAG laser operating at 1.064 μm and a CW Ti:Sapphire laser tunable from 767 to 871 nm. Temperature-dependent quasi-phase-matched DFG wavelength acceptance bandwidth was studied and characterized. An empiric formula is given to estimate the phase-matched wavelength acceptance bandwidth as a function of the crystal temperature at Λ = 22.5 μm. A large frequency scan of 128 cm−1 (about 78 cm−1 above 1 μW) near 4.2 μm was achieved. The whole absorption spectrum of the P and R branches of the ν3 band of atmospheric carbon dioxide has been recorded with a single phase-matched frequency scan.  相似文献   

13.
周期极化铌酸锂中光整流THz波辐射   总被引:1,自引:0,他引:1       下载免费PDF全文
张开春  刘盛纲 《物理学报》2007,56(9):5258-5262
从理论上详细研究飞秒激光在周期极化铌酸锂(PPLN)晶体中由光整流效应产生的THz波辐射.着重研究THz波辐射场的频域场、时域场和频谱宽度的分布.并详细讨论辐射场脉冲持续时间、幅度、频谱宽度随晶体长度和辐射角的变化. 关键词: PPLN 光整流 THz波  相似文献   

14.
We analyze the temporal coherence of an optical infrared radiation in the visible domain by using a Mach-Zehnder interferometer and a wavelength conversion stage in each arm. We exploit a sum frequency generation process in bulk PPLN crystal to convert the infrared radiation at 1.55 μm into 0.63 μm before the interferometric mixing. The applicability of the Wiener-Kintchine theorem through up-conversion processes is here demonstrated by direct comparisons among visible and infrared measurements.  相似文献   

15.
李忠洋  邴丕彬  徐德刚  曹小龙  姚建铨 《物理学报》2013,62(8):84212-084212
针对光学参量振荡产生太赫兹波转换效率低的缺点, 提出了级联参量振荡产生太赫兹波的新机理以提高转换效率. 以周期极化铌酸锂晶体为例, 对级联参量振荡产生太赫兹波的原理和过程进行了理论研究. 分析了抽运光波长、周期极化铌酸锂晶体极化周期和工作温度对产生一阶、二阶闲频光频率的影响. 推导了三波共线相互作用条件下太赫兹波的增益特性和吸收特性. 计算结果表明, 通过级联参量振荡可以有效提高太赫兹波的转换效率, 并可以得到宽调谐的太赫兹波输出. 基于分析结果, 设计了周期极化铌酸锂晶体级联参量振荡产生高效率、宽调谐、窄线宽、连续太赫兹波的实验. 关键词: 太赫兹波 太赫兹波参量振荡 级联参量振荡  相似文献   

16.
Terahertz (THz) quantum cascade lasers (QCLs) are key elements for high-power terahertz beam generation for integrated applications. In this study, we design a highly nonlinear THz-QCL active region in order to increase the output power of the device especially at lower THz frequencies based on difference frequency generation (DFG) process. It has been shown that the output power increases for a 3.2 THz structure up to 1.2 μW at room temperature in comparison with the reported power of P = 0.3 μW in [1]. The mid-IR wavelengths associated with this laser are λ1 = 12.12 μm and λ2 = 13.93 μm, which are mixed in a medium with high second-order nonlinearity. A similar approach has been used to design an active region with THz frequency of 1.8 THz. The output power of this structure reaches to 1 μW at room temperature where the mid-IR wavelengths are λ1 = 12.05 μm, λ2 = 12.99 μm.  相似文献   

17.
Terahertz modulator using photonic crystals   总被引:1,自引:0,他引:1  
In this letter, a novel terahertz wave modulator based on a silicon oxide/polyaniline photonic crystal is proposed. The modulation mechanism of the novel modulator is based on a dynamic shift of the photonic band gap by the applied external electric field. Its performances were investigated with the finite-difference time-domain method. The novel modulator has 3 dB modulation bandwidth of 10 kHz, a size as small as 20 mm and its extinction ratio larger than 30 dB at the frequency of 1 THz.  相似文献   

18.
We designed a narrow bandpass terahertz wave filter using photonic crystals with a line defect. An inserted linear defect in one-dimensional photonic crystal structures for a channeled filtering in the terahertz range are studied and designed theoretically. By using transfer matrix method, we examined the transmittance spectra for the proposed terahertz wave filter has a 3 dB transmission loss bandwidth of 20 MHz ranging from 0.29998 THz to 0.30001 THz. The simulated results show that a very narrow transmission band and high transmission (higher than 99.99%) centered at λ0, and very sharp edges can be achieved.  相似文献   

19.
To expand the span of the optical frequency comb (OFC), we generated the second harmonics of an OFC at 1.55microm , using a multiperiod periodically poled lithium niobate (PPLN) crystal. A coupled-cavity OFC generator with an average output power of 0.2 mW was amplified and expanded with a fiber amplifier and a dispersion-flattened fiber. The fundamental OFC average power and span were 100 mW and 45 THz, respectively. The second-harmonic comb's span was 3.2 THz; however, we tuned the center frequency over 30 THz by changing the poling period. We also demonstrated that the second-harmonic comb can be used for frequency-difference measurement.  相似文献   

20.
We mix the emission of a femtosecond Ti:sapphire laser with the emission of a continuous wave infrared laser in a beta-barium borate crystal. Green light with a center wavelength of 527 nm and a spectral width of 2.5 nm resulting from sum frequency generation is detected. An intensity study verifies that a nonlinear χ(2) process is at the origin of the green light generation. The experimentally obtained conversion efficiency of 7 × 10−10 is in good agreement to simple theoretical considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号