首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
There is mounting evidence that suggests that general acid/base catalysis is operative in the hairpin ribozyme, with analogy to the protein enzyme RNaseA. Nevertheless, the extent of general base catalysis as well as the identity of the specific chemical groups responsible remains the subject of some controversy. An affinity label has previously been used to alkylate histidine 12 (His12), the active general base in RNaseA. To date, no such experiment has been applied to a ribozyme. We have synthesized the analogous affinity label for the hairpin ribozyme with an electrophilic 2'-bromoacetamide group in lieu of the 2'-hydroxyl (2'OH) at the substrate cleavage site and show that guanosine 8 (G8) of the hairpin ribozyme is specifically alkylated, most likely at the N1 position. This evidence strongly implicates N1 of G8 in active site chemistry. By direct analogy to RNase A, these findings could be consistent with the hypothesis that deprotonated G8 residue functions as a general base in the hairpin ribozyme. Other mechanistic possibilities for N1 of G8 such as indirect general base catalysis mediated by a water molecule or transition state stabilization could also be consistent with our findings.  相似文献   

2.
Recent structural and computational studies have shed new light on the catalytic mechanism and active site structure of the RNA cleaving hammerhead ribozyme. Consequently, specific ribozyme functional groups have been hypothesized to be directly involved in general/acid base catalysis. In order to test this hypothesis, we have developed an affinity label to identify the functional general base in the S. mansoni hammerhead ribozyme. The ribozyme was reacted with a substrate analogue bearing a 2'-bromoacetamide group in place of the nucleophilic 2'-hydroxyl group which would normally be deprotonated by a general base. The electrophilic 2'-bromoacetamide group is poised to alkylate the general base, which is subsequently identified by footprinting analysis. Herein, we demonstrate alkylation of N1 of G12 in the hammerhead ribozyme in a pH and [Mg(2+)] dependent manner that is consistent with the native cleavage reaction. These results provide substantial evidence that deprotonated N1 of G12 functions directly as a general base in the hammerhead ribozyme; moreover, our experiments provide evidence that the pKa of G12 is perturbed downward in the context of the active site structure. We also observed other pH-independent alkylations, which do not appear to reflect the catalytic mechanism, but offer further insight into ribozyme conformation and structure.  相似文献   

3.
A series of ten 60 ns molecular dynamics (MD) simulations of the native and mutated full length hammerhead ribozymes in the reactant state and in an activated precursor state (G8:2'OH deprotonated) are reported. Mutant simulations include the C3U, G8A, and G8I single mutants and a C3U/G8A double mutant that exhibits an experimental rescue effect. The results provide critical details into the origin of the observed mutation effects and support a mechanism where the 2'OH of G8 acts as a general acid catalyst that is held in position through Watson-Crick hydrogen bonding between G8 and C3.  相似文献   

4.
Solvent structure and hammerhead ribozyme catalysis   总被引:2,自引:0,他引:2  
Although the hammerhead ribozyme is regarded as a prototype for understanding RNA catalysis, the mechanistic roles of associated metal ions and water molecules in the cleavage reaction remain controversial. We have investigated the catalytic potential of observed divalent metal ions and water molecules bound to a 2 A structure of the full-length hammerhead ribozyme by using X-ray crystallography in combination with molecular dynamics simulations. A single Mn(2+) is observed to bind directly to the A9 phosphate in the active site, accompanying a hydrogen-bond network involving a well-ordered water molecule spanning N1 of G12 (the general base) and 2'-O of G8 (previously implicated in general acid catalysis) that we propose, based on molecular dynamics calculations, facilitates proton transfer in the cleavage reaction. Phosphate-bridging metal interactions and other mechanistic hypotheses are also tested with this approach.  相似文献   

5.
We present results of a theoretical analysis of the phosphorylation reaction in cAMP-dependent protein kinase using a combined quantum mechanical and molecular mechanics (QM/MM) approach. Detailed analysis of the reaction pathway is provided using a novel QM/MM implementation of the nudged elastic band method, finite temperature fluctuations of the protein environment are taken into account using free energy calculations, and an analysis of hydrogen bond interactions is performed on the basis of calculated frequency shifts. The late transfer of the substrate proton to the conserved aspartate (D166), the activation free energy of 15 kcal/mol, and the slight exothermic (-3 kcal/mol) character of the reaction are all consistent with the experimental data. The near attack conformation of D166 in the reactant state is maintained by interactions with threonine-201, asparagine-177, and most notably by a conserved water molecule serving as a strong structural link between the primary metal ion and the D166. The secondary Mg ion acts as a Lewis acid, attacking the beta-gamma bridging oxygen of ATP. This interaction, along with a strong hydrogen bond between the D166 and the substrate, contributes to the stabilization of the transition state. Lys-168 maintains a hydrogen bond to a transferring phosphoryl group throughout a reaction process. This interaction increases in the product state and contributes to its stabilization.  相似文献   

6.
A cyclin-dependent kinase, Cdk2, catalyzes the transfer of the gamma-phosphate from ATP to a threonine or serine residue of its polypeptide substrates. Here, we investigate aspects of the reaction mechanism of Cdk2 by gas-phase density functional calculations, classical molecular dynamics, and Car-Parrinello QM/MM simulations. We focus on the role of the conserved Asp127 and on the nature of the phosphoryl transfer reaction mechanism catalyzed by Cdk2. Our findings suggest that Asp127 is active in its deprotonated form by assisting the formation of the near-attack orientation of the substrate serine or threonine. Therefore, the residue does not act as a general base during the catalysis. The mechanism for the phosphoryl transfer is a single SN2-like concerted step, which shows a phosphorane-like transition state geometry. Although the resulting reaction mechanism is in agreement with a previous density functional study of the same catalytic reaction mechanism (Cavalli et al., Chem. Comm. 2003, 1308-1309), the reaction barrier is considerably lower when QM/MM calculations are performed, as in this study ( approximately 42 kcal mol(-1) QM vs. approximately 24 kcal mol(-1) QM/MM); this indicates that important roles for the catalysis are played by the protein environment and solvent waters. Because of the high amino acid sequence conservation among the whole family of cyclin-dependent kinases (CDKs), these results could be general for the CDK family.  相似文献   

7.
The hammerhead ribozyme is a small RNA motif that catalyzes the cleavage and ligation of RNA. The well-studied minimal hammerhead motif is inactive under physiological conditions and requires high Mg(2+) concentrations for efficient cleavage. In contrast, natural hammerheads are active under physiological conditions and contain motifs outside the catalytic core that lower the requirement for Mg(2+). Single-turnover kinetics were used here to characterize the Mg(2+) and pH dependence for cleavage of a trans-cleaving construct of the Schistosoma mansoni natural hammerhead ribozyme. Compared to the minimal hammerhead motif, the natural Schistosoma ribozyme requires 100-fold less Mg(2+) to achieve a cleavage rate of 1 min(-1). The improved catalysis results from tertiary interactions between loops in stems I and II and likely arises from increasing the population of the active conformation. Under optimum pH and Mg(2+) conditions this ribozyme cleaves at over 870 min(-1) at 25 degrees C, further demonstrating the impressive catalytic power of this ribozyme.  相似文献   

8.
Chorismate mutase is a key model system in the development of theories of enzyme catalysis. To analyze the physical nature of catalytic interactions within the enzyme active site and to estimate the stabilization of the transition state (TS) relative to the substrate (differential transition state stabilization, DTSS), we have carried out nonempirical variation-perturbation analysis of the electrostatic, exchange, delocalization, and correlation interactions of the enzyme-bound substrate and transition-state structures derived from ab initio QM/MM modeling of Bacillus subtilis chorismate mutase. Significant TS stabilization by approximately -23 kcal/mol [MP2/6-31G(d)] relative to the bound substrate is in agreement with that of previous QM/MM modeling and contrasts with suggestions that catalysis by this enzyme arises purely from conformational selection effects. The most important contributions to DTSS come from the residues, Arg90, Arg7, Glu78, a crystallographic water molecule, Arg116, and Arg63, and are dominated by electrostatic effects. Analysis of the differential electrostatic potential of the TS and substrate allows calculation of the catalytic field, predicting the optimal location of charged groups to achieve maximal DTSS. Comparison with the active site of the enzyme from those of several species shows that the positions of charged active site residues correspond closely to the optimal catalytic field, showing that the enzyme has evolved specifically to stabilize the TS relative to the substrate.  相似文献   

9.
The molecular mechanism of hairpin ribozyme catalysis is studied with molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential with a recently developed semiempirical AM1/d-PhoT model for phosphoryl transfer reactions. Simulations are used to derive one- and two-dimensional potentials of mean force to examine specific reaction paths and assess the feasibility of proposed general acid and base mechanisms. Density-functional calculations of truncated active site models provide complementary insight to the simulation results. Key factors utilized by the hairpin ribozyme to enhance the rate of transphosphorylation are presented, and the roles of A38 and G8 as general acid and base catalysts are discussed. The computational results are consistent with available experimental data, provide support for a general acid/base mechanism played by functional groups on the nucleobases, and offer important insight into the ability of RNA to act as a catalyst without explicit participation by divalent metal ions.  相似文献   

10.
Various quantum mechanical/molecular mechanical (QM/MM) geometry optimizations starting from an x-ray crystal structure and from the snapshot structures of constrained molecular dynamics (MD) simulations have been performed to characterize two dynamically stable active site structures of phosphodiesterase-5 (PDE5) in solution. The only difference between the two PDE5 structures exists in the catalytic, second bridging ligand (BL2) which is HO- or H2O. It has been shown that, whereas BL2 (i.e. HO-) in the PDE5(BL2 = HO-) structure can really bridge the two positively charged metal ions (Zn2+ and Mg2+), BL2 (i.e. H2O) in the PDE5(BL2 = H2O) structure can only coordinate Mg2+. It has been demonstrated that the results of the QM/MM geometry optimizations are remarkably affected by the solvent water molecules, the dynamics of the protein environment, and the electronic embedding charges of the MM region in the QM part of the QMM/MM calculation. The PDE5(BL2 = H2O) geometries optimized by using the QM/MM method in different ways show strong couplings between these important factors. It is interesting to note that the PDE5(BL2 = HO-) and PDE5(BL2 = H2O) geometries determined by the QM/MM calculations neglecting these three factors are all consistent with the corresponding geometries determined by the QM/MM calculations that account for all of these three factors. These results suggest the overall effects of these three important factors on the optimized geometries can roughly cancel out. However, the QM/MM calculations that only account for some of these factors could lead to considerably different geometries. These results might be useful also in guiding future QM/MM geometry optimizations on other enzymes.  相似文献   

11.
Active-site guanines that occupy similar positions have been proposed to serve as general base catalysts in hammerhead, hairpin, and glmS ribozymes, but no specific roles for these guanines have been demonstrated conclusively. Structural studies place G33(N1) of the glmS ribozyme of Bacillus anthracis within hydrogen-bonding distance of the 2'-OH nucleophile. Apparent pK(a) values determined from the pH dependence of cleavage kinetics for wild-type and mutant glmS ribozymes do not support a role for G33, or any other active-site guanine, in general base catalysis. Furthermore, discrepancies between apparent pK(a) values obtained from functional assays and microscopic pK(a) values obtained from pH-fluorescence profiles with ribozymes containing a fluorescent guanosine analogue, 8-azaguanosine, at position 33 suggest that the pH-dependent step in catalysis does not involve G33 deprotonation. These results point to an alternative model in which G33(N1) in its neutral, protonated form donates a hydrogen bond to stabilize the transition state.  相似文献   

12.
Molecular fragmentation quantum mechanics (QM) calculations have been combined with molecular mechanics (MM) to construct the fragmentation QM/MM method for simulations of dilute solutions of macromolecules. We adopt the electrostatics embedding QM/MM model, where the low-cost generalized energy-based fragmentation calculations are employed for the QM part. Conformation energy calculations, geometry optimizations, and Born-Oppenheimer molecular dynamics simulations of poly(ethylene oxide), PEO(n) (n = 6-20), and polyethylene, PE(n) ( n = 9-30), in aqueous solution have been performed within the framework of both fragmentation and conventional QM/MM methods. The intermolecular hydrogen bonding and chain configurations obtained from the fragmentation QM/MM simulations are consistent with the conventional QM/MM method. The length dependence of chain conformations and dynamics of PEO and PE oligomers in aqueous solutions is also investigated through the fragmentation QM/MM molecular dynamics simulations.  相似文献   

13.
The hammerhead ribozyme is an RNA molecule capable of self-cleavage at a unique site within its sequence. Hydrolysis of this phosphodiester linkage has been proposed to occur via an in-line attack geometry for nucleophilic displacement by the 2'-hydroxyl on the adjoining phosphorus to generate a 2',3'-cyclic phosphate ester with elimination of the 5'-hydroxyl group, requiring a divalent metal ion under physiological conditions. The proposed S(N)2(P) reaction mechanism was investigated using density functional theory calculations incorporating the hybrid functional B3LYP to study this metal ion-dependent reaction with a tetraaquo magnesium (II)-bound hydroxide ion. For the Mg(2+)-catalyzed reaction, the gas-phase geometry optimized calculations predict two transition states with a kinetically insignificant, yet clearly defined, pentacoordinate intermediate. The first transition state located for the reaction is characterized by internal nucleophilic attack coupled to proton transfer. The second transition state, the rate-determining step, involves breaking of the exocyclic P-O bond where a metal-ligated water molecule assists in the departure of the leaving group. These calculations demonstrate that the reaction mechanism incorporating a single metal ion, serving as a Lewis acid, functions as a general base and can afford the necessary stabilization to the leaving group by orienting a water molecule for catalysis.  相似文献   

14.
Histone lysine methylation is emerging as an important mechanism to regulate chromatin structure and gene activity. To provide theoretical understanding of its reaction mechanism and product specificity, ab initio quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations and molecular dynamics simulations have been carried out to investigate the histone lysine methyltransferase SET7/9. It is found that the methyl-transfer reaction catalyzed by SET7/9 is a typical in-line S(N)2 nucleophilic substitution reaction with a transition state of 70% dissociative character. The calculated average free energy barrier at the MP2(6-31+G) QM/MM level is 20.4 +/- 1.1 kcal/mol, consistent with the activation barrier of 20.9 kcal/mol estimated from the experimental reaction rate. The barrier fluctuation has a strong correlation with the nucleophilic attack distance and angle in the reactant complex. The calculation results show that the product specificity of SET7/9 as a monomethyltransferase is achieved by disrupting the formation of near-attack conformations for the dimethylation reaction.  相似文献   

15.
We have carried out density functional theory QM/MM calculations on the catalytic subunit of cAMP-dependent protein kinase (PKA). The QM/MM calculations indicate that the phosphorylation reaction catalyzed by PKA is mainly dissociative, and Asp166 serves as the catalytic base to accept the proton delivered by the substrate peptide. Among the key interactions in the active site, the Mg(2+) ions, glycine rich loop, and Lys72 are found to stabilize the transition state through electrostatic interactions. On the other hand, Lys168, Asn171, Asp184, and the conserved waters bound to Mg(2+) ions do not directly contribute to lower the energy barrier of the phosphorylation reaction, and possible roles for these residues are proposed. The QM/MM calculations with different QM/MM partition schemes or different initial structures yield consistent results. In addition, we have carried out 12 ns molecular dynamics simulations on both wild type and K168A mutated PKA, respectively, to demonstrate that the catalytic role of Lys168 is to keep ATP and substrate peptide in the near-attack reactive conformation.  相似文献   

16.
Results of a series of hybrid quantum mechanical/molecular mechanical (QM/MM) activated dynamics simulations of thio effects in the transphosphorylation (methanolysis) of a 2'-ribose, 5'-methyl phosphate-diester under basic conditions are presented. Single and double substitutions in the nonbridging oxygen positions exhibit thio effects in accord with experimental data and show the existence of a stable intermediate. Thio substitution at the 2' and 5' positions resulted in reactions having a single transition state with increased and decreased free energy barriers, respectively, relative to the unsubstituted reaction. In all of the reactions except for the 5' substitution, the rate-limiting step corresponds to exocyclic cleavage. In the 5' substitution reaction, the rate-limiting step corresponds to endocyclic cleavage and shows a considerable reverse thio effect, in accord with experimental observations of phosphates with enhanced leaving groups. Thio substitution at the 3' position results in a mild reverse thio effect that arises from electronic stabilization of the dianionic transition state. The results presented here provide an important step toward the development and application of new hybrid QM/MM methods that, combined with experiment, may provide a detailed picture of the molecular mechanisms of RNA catalysis.  相似文献   

17.
Pistol ribozymes constitute a new class of small self‐cleaving RNAs. Crystal structures have been solved, providing three‐dimensional snapshots along the reaction coordinate of pistol phosphodiester cleavage, corresponding to the pre‐catalytic state, a vanadate mimic of the transition state, and the product. The results led to the proposed underlying chemical mechanism. Importantly, a hydrated Mg2+ ion remains innersphere‐coordinated to N7 of G33 in all three states, and is consistent with its likely role as acid in general acid base catalysis (δ and β catalysis). Strikingly, the new structures shed light on a second hydrated Mg2+ ion that approaches the scissile phosphate from its binding site in the pre‐cleavage state to reach out for water‐mediated hydrogen bonding in the cyclophosphate product. The major role of the second Mg2+ ion appears to be the stabilization of product conformation. This study delivers a mechanistic understanding of ribozyme‐catalyzed backbone cleavage.  相似文献   

18.
We have applied molecular dynamics umbrella-sampling simulation and ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT) to calculate the reaction rate of xylose-to- xylulose isomerization catalyzed by xylose isomerase in the presence of two Mg2+ ions. The calculations include determination of the free energy of activation profile and ensemble averaging in the transmission coefficient. The potential energy function is approximated by a combined QM/MM/SVB method involving PM3 for the quantum mechanical (QM) subsystem, CHARMM22 and TIP3P for the molecular mechanical (MM) environment, and a simple valence bond (SVB) local function of two bond distances for the hydride transfer reaction. The simulation confirms the essential features of a mechanism postulated on the basis of kinetics and X-ray data by Whitlow et al. (Whitlow, M.; Howard, A. J.; Finzel, B. C.; Poulos, T. L.; Winborne, E.; Gilliland, G. L. Proteins 1991, 9, 153) and Ringe, Petsko, and coworkers (Labie, A.; Allen, K.-N.; Petsko, G. A.; Ringe, D. Biochemistry 1994, 33, 5469). This mechanism involves a rate-determining 1,2-hydride shift with prior and post proton transfers. Inclusion of quantum mechanical vibrational energy is important for computing the free energy of activation, and quantum mechanical tunneling effects are essential for computing kinetic isotope effects (KIEs). It is found that 85% of the reaction proceeds by tunneling and 15% by overbarrier events. The computed KIE for the ratio of hydride to deuteride transfer is in good agreement with the experimental results. The molecular dynamics simulations reveal that proton and hydride transfer reactions are assisted by breathing motions of the mobile Mg2+ ion in the active site, providing evidence for concerted motion of Mg2+ during the hydride transfer step.  相似文献   

19.
A massively parallel program for quantum mechanical‐molecular mechanical (QM/MM) molecular dynamics simulation, called Platypus (PLATform for dYnamic Protein Unified Simulation), was developed to elucidate protein functions. The speedup and the parallelization ratio of Platypus in the QM and QM/MM calculations were assessed for a bacteriochlorophyll dimer in the photosynthetic reaction center (DIMER) on the K computer, a massively parallel computer achieving 10 PetaFLOPs with 705,024 cores. Platypus exhibited the increase in speedup up to 20,000 core processors at the HF/cc‐pVDZ and B3LYP/cc‐pVDZ, and up to 10,000 core processors by the CASCI(16,16)/6‐31G** calculations. We also performed excited QM/MM‐MD simulations on the chromophore of Sirius (SIRIUS) in water. Sirius is a pH‐insensitive and photo‐stable ultramarine fluorescent protein. Platypus accelerated on‐the‐fly excited‐state QM/MM‐MD simulations for SIRIUS in water, using over 4000 core processors. In addition, it also succeeded in 50‐ps (200,000‐step) on‐the‐fly excited‐state QM/MM‐MD simulations for the SIRIUS in water. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

20.
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this conformation is not in itself a major contribution to catalysis. Transition state stabilization (by electrostatic interactions, including hydrogen bonds) is found to be central to catalysis by the enzyme. Several hydrogen bonds are observed to shorten at the TS. The active site is clearly complementary to the transition state for the reaction, stabilizing it more than the substrate, so reducing the barrier to reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号