首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triphenylbismuth diaroxides Ph3Bi(OAr)2 (Ar = C6H3(Br2-2,4) (I), C6H2(Br2-2,6)(NO2-4) (II), and C6H2[(NO2)3-2,4,6] (III) are synthesized in yields up to 74% by the reaction of triphenylbismuth with phenols in the presence of hydrogen peroxide (taken at a molar ratio 1: 2: 1, respectively) in ether. According to X-ray diffraction data, the bismuth atoms in compounds I-III have distorted trigonal-bipyramidal coordination with the aroxyl substituents in the axial positions; the Bi-C, Bi-O bond lengths and the OBiO, CBiC angles vary in the intervals 2.162–2.204, 2.150–2.299 ? and 172.4°–176.1°, 109.6°–139.9°, respectively. Compound II exhibits intramolecular contacts between the central atom and ortho-Br atoms (3.924, 4.101 ?), and compound III has similar contacts of the Bi atom with the O atoms of the ortho-nitro groups (3.114, 3.313 ?). Original Russian Text ? V.V. Sharutin, I.V. Egorova, O.K. Sharutina, A.P. Pakusina, M.A. Pushilin, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 1, pp. 14–21.  相似文献   

2.
The reaction of triphenylbismuth, hydrogen peroxide, and phenol (molar ratio 1 : 1 : 2) in ether was used to synthesize triphenylbismuth diaroxides Ph3Bi(OAr)2 [Ar = C6H3(NO2)2-2,4, C6H2(NO2)3-2,4,6, C6H3Cl2-2,6, C6H2Cl3-2,4,6, C6H3Br2-2,4, C6H2Br3-2,4,6, C6H2Br2-2,4,Me-6, C6H2Br2-2,6, NO2-4]. At an equimolar reagent ratio, bridged bismuth compounds (Ph3BiOAr)2O are formed. The crystal structure of bis-(2,4-dinitrophenoxy)triphenylbismuth Ph3Bi[OC6H3(NO2)2-2,4]2 was studied by X-ray diffraction to show that the bismuth atom has a distorted trigonal bipyramidal coordination and the 2,4-dinitrophenoxyl ligands are axial. The CBiC and OBiO angles are 109.6(5)°, 122.3(5)°, 128.1(5)°, and 175.6(3)°. The Bi-O1,6 and Bi-C bond lengths are 2.256(10), 2.242(9) and 2.18(1), 2.18(1), 2.19(1) Å, respectively.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 6, 2005, pp. 927–929.Original Russian Text Copyright © 2005 by Sharutin, Egorova, Tsiplukhina, Molokov, Fukin.  相似文献   

3.
Tetraphenylbismuth(V) derivatives of the general formula Ph4BiX [X = OSO2C6H4Me-4, OC6H2(NO2)3-2,4,6, OC6H2(NO2-4)(Br2-2,6), OSO2C6H3(OH)(COOH)] react with methyl acrylate in the presence of palladium dichloride (1:3:0.04 molar ratio) in acetonitrile at 20°C to form the cross-coupling products, methyl cinnamate (0.17–0.54 mol mol?1 starting bismuth compound) and methylhydrocinnamate (0.10–0.73 mol mol?1), diphenyl (0.06–0.80 mol mol?1), and benzene (0.02–0.36 mol mol?1). The highest C-phenylating activity is shown by Ph4BiOSO2C6H4Me-4. The mechanisms with the palladium-catalyzed cross-coupling reactions are suggested.  相似文献   

4.
Four new complexes of pentavalent bismuth are synthesized: Ph3Bi[OC6H2(Br3-2,4,6)]2, Ph3Bi[OC6H2(Cl3-2,4,6)]2, Ph4BiOC6H2(Br3-2,4,6), and Ph4BiOC6H2(Cl3-2,4,6). Tetraphenylbismuth aroxides are produced by the disproportionation reaction of ligands from pentaphenylbismuth and triphenylbismuth diaroxides in toluene or from pentaphenylbismuth and phenol. Triphenylbismuth diaroxides are synthesized from phenol, triphenylbismuth, and hydrogen peroxide taken at a molar ratio of 2 : 1 : 1, respectively, in diethyl ether. According to the X-ray diffraction data, the bismuth atom surrounding in 2,4,6-tribromophenoxytetraphenylbismuth has the configuration of a trigonal bipyramid with the aroxyl ligand in the axial position. The Bi-C and Bi-O bond lengths are 2,184, 2.190, 2.234, and 2.514 Å, respectively, and the equatorial CSbC angles are equal to 111.4°, 121.3°, and 121.3°.Translated from Koordinatsionnaya Khimiya, Vol. 30, No. 12, 2004, pp. 935–938.Original Russian Text Copyright © 2004 by Sharutin, Egorova, Tsiplukhina, Gerasimenko, Pushilin.  相似文献   

5.
Stable N‐heterocyclic carbene analogues of Thiele and Chichibabin hydrocarbons, [(IPr)(C6H4)(IPr)] and [(IPr)(C6H4)2(IPr)] ( 4 and 5 , respectively; IPr=C{N(2,6‐iPr2C6H3)}2CHCH), are reported. In a nickel‐catalyzed double carbenylation of 1,4‐Br2C6H4 and 4,4′‐Br2(C6H4)2 with IPr ( 1 ), [(IPr)(C6H4)(IPr)](Br)2 ( 2 ) and [(IPr)(C6H4)2(IPr)](Br)2 ( 3 ) were generated, which respectively afforded 4 and 5 as crystalline solids upon reduction with KC8. Experimental and computational studies support the semiquinoidal nature of 5 with a small singlet?triplet energy gap ΔES?T of 10.7 kcal mol?1, whereas 4 features more quinoidal character with a rather large ΔES?T of 25.6 kcal mol?1. In view of the low ΔES?T, 4 and 5 may be described as biradicaloids. Moreover, 5 has considerable (41 %) diradical character.  相似文献   

6.
Triphenylbismuth(V) derivatives Ph3BiX2 [X = OC6H2(NO2)3-2,4,6, OC6H2(NO2-4)Br2-2,6, OTs, OSO2C6H4OH-4] react with methyl acrylate and PdCl2 (1:3:0.04 molar ratio) in acetonitrile at 20°C to form the cross-coupling products, methyl cinnamate (0.26–0.51 mol mol?1 starting bismuth compound) and methyl hydrocinnamate (0–0.17 mol mol?1); diphenyl, the homocoupling product (0–0.13 mol mol?1); and benzene (0.02–0.15 mol mol?1). The reaction of Ph3Bi(OSO2C6H4OH-4)2 is characterized by the selective formation of methyl cinnamate, but the reagent activity is low. Ph3Bi(OTs)2 exhibits the highest activity among the derivatives studied, but the reaction selectivity is low. The mechanisms of the palladium-catalyzed formation of homo-and cross-coupling products are proposed.  相似文献   

7.
The title complexes, (C5H6N)[Ce(NO3)4(C15H11N3)]·C5H5N or (Hpy)­[Ce(NO3)4(terpy)]·py, (I) (py is pyridine, C5H5N, and terpy is ter­pyridine, C15H11N3), and [Ce(NO3)3­(C15H11N3)(CH4O)2] or [Ce(NO3)3(terpy)(OHCH3)2], (II), are 11-coordinate. The coordination polyhedron of the Ce atom in (I) is irregular, while that in (II) can be described as an icosahedron with two vertices replaced by one.  相似文献   

8.
Three new copper(II) complexes with isonicotinic acid N-oxide (HL) and 1,10-phenanthroline (phen) as ligands, [Cu(L)(phen)(H2O)]2(NO3)2···2H2O (1), [Cu(L)(phen)(H2O)]2(ClO4)2···2H2O (2), and [Cu(L)(phen)Br]2- [Cu(L)(phen)(H2O)]2Br2···6H2O (3) have been synthesized and structurally characterized. The structures of all three complexes feature a Cu2 dimer formed by two Cu(II) ions interconnected by two bridging ligands. Each copper(II) ion has a distorted square pyramidal coordination geometry with elongated axial coordination by an aqua ligand or halogen anion. The isonicotinic acid N-oxide anion is bidentate, being coordinated to two Cu(II) ions through its N-O oxygen and one of its carboxylate oxygen atoms. Magnetic susceptibility measurements show a Curie–Weiss paramagnetic behavior characteristic of one unpaired electron for a copper(II) ion for all three complexes.  相似文献   

9.
The metallation reaction between di­butyl­magnesium and 2,6-diiso­propyl-N-(tri­methyl­silyl)­aniline gives the unusual monomeric three-coordinate complex (diethyl ether-κO)­bis­[2,6-diiso­propyl-N-(tri­methyl­silyl)­anilido-κN]­magnesium(II), [Mg(C15H26NSi)2(C4H10O)] or [Mg{(Me3Si)(2,6-iPr2C6H3)N}2(Et2O)]. This low-coordinate species has a distorted trigonal-planar coordination environment, with an additional short Mg—Cipso contact of 2.799 (2) Å.  相似文献   

10.
The dirhodium complex bis­(benzonitrile)tetra­kis[μ‐4‐(diethyl­amino)benzoato‐κ2O:O′]dirhodium(II)(RhRh) benzonitrile disolvate, [Rh2(C11H14NO2)4(C7H5N)2]·2C7H5N, lies about an inversion centre. The dirhodium complex (methanol)tetra­kis(μ‐4‐nitro­benzoato‐κ2O:O′)(pyridine)dirhodium(II)(RhRh) dichloro­methane solvate, [Rh2(C7H4NO4)4(C5H5N)(CH4O)]·CH2Cl2, lies in a general position in the unit cell, but the complexes dimerize around an inversion centre via O—H⋯O hydrogen bonding of the axial MeOH to a carboxyl­ate O atom. In the latter crystal structure, π–π stacking inter­actions between the bridging 4‐nitro­benzoate ligands and the axial pyridine ligand are observed between adjacent mol­ecules.  相似文献   

11.
Organometallic Compounds of the Lanthanides. 88. Monomeric Lanthanide(III) Amides: Synthesis and X-Ray Crystal Structure of [Nd{N(C6H5)(SiMe3)}3(THF)], [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2,6)(SiMe3)}2(THF)], and [ClNd{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] A series of lanthanide(III) amides [Ln{N(C6H5) · (SiMe3)}3(THF)x] [Ln = Y ( 1 ), La ( 2 ), Nd ( 3 ), Sm ( 4 ), Eu ( 5 ), Tb ( 6 ), Er ( 8 ), Yb ( 9 ), Lu ( 10 )] could be prepared by the reaction of lanthanide trichlorides, LnCl3, with LiN(C6H5)(SiMe3). Treatment of NdCl3(THF)2 and LuCl3(THF)3 with the lithium salts of the bulky amides [N(C6H3R2-2,6)(SiMe3)]? (R = Me, iso-Pr) results in the formation of the lanthanide diamides [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2, 6)(SiMe3)}2(THF)] ( 11 ) and [ClLn{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] [Ln = Nd ( 12 ), Lu ( 13 )], respectively. The 1H- and 13C-NMR and mass spectra of the new compounds as well as the X-ray crystal structures of the neodymium derivatives 3 , 11 and 12 are discussed.  相似文献   

12.
We report three structurally related single ion Dy compounds using the pentadentate ligand 2,6-bis((E)-1-(2-(pyridin-2-yl)-hydrazineylidene)ethyl)pyridine (H2dapp) [Dy(H2dapp)(NO3)2]NO3 ( 1 ), [Dy(H2dapp)(OAc)2]Cl ( 2 ) and [Dy(H2dapp)(NO3)2]Cl0.92(NO3)0.08 ( 3 ). The (H2dapp) occupies a helical twisted pentagonal equatorial arrangement with two anionic ligands in the axial positions. Further influence on the electronic and magnetic structure is provided by a closely associated counterion interacting with the central N−H group of the (H2dapp). The slow relaxation of the magnetisation shows that the anionic acetates give the greatest slowing down of the magnetisation reversal. Further influence on the relaxation properties of compounds 1 and 2 is the presence of short nitrate-nitrate intermolecular ligand contact opening further lattice relaxation pathways.  相似文献   

13.
A novel compound, KBi(C6H4O7) · 3.5H2O (I), has been synthesized in the Bi(NO3)2-K3(HCit) system (HCit3? is an anion of citric acid C6H8O7) at a component ratio (n) of 8 in a water-glycerol mixture, and its crystal structure has been determined. The crystals are unstable in air. The crystals are triclinic: a = 7.462 Å, b = 10.064 Å, c = 17.582 Å, α = 100.27°, β = 99.31°, γ = 105.48°, V = 1221.2 Å3, Z = 2, space group $P\bar 1$ . In the structure of I, asymmetric binuclear fragments [Bi2(Cit4?)2(H2O)2]2? are linked through inversion centers into polymeric chain anions. Ions K+ and crystal water molecules are arranged in channels between the chains. The Bi(1)...Bi(2) distances in the binuclear fragment are 4.62 Å, and the Bi(1)...Bi(1) and Bi(2)...Bi(2) distances between bismuth atoms in the chain are 5.83 and 5.95 Å, respectively. The chains are linked through bridging oxygen atoms of the ligands Cit to form layers. In the centrosymmetric four-membered chelate ring Bi2O2 formed through Bi-O(Cit) bonds, the distances Bi(1)-Bi(1) are equal to 4.55 Å, and Bi(1)-O are 2.66 and 2.84 Å. The Bi-O bond lengths in I are in the range 2.12–3.16 Å. The Cit ligands act as hexadentate chelating/bridging ligands.  相似文献   

14.
Four novel bridged‐amidines H2L {1,4‐R1[C(=NR2)(NHR2)]2 [R1=C6H4, R2=2,6‐iPr2C6H3 (H2L1); R1=C6H4, R2=2,6‐Me2C6H3 (H2L2); R1=C6H10, R2=2,6‐iPr2C6H3 (H2L3); R1=C6H10, R2=2,6‐Me2C6H3 (H2L4)]} were synthesized in 65%–78% isolated yields by the condensation reaction of dicarboxylic acid with four equimolar amounts of amines in the presence of PPSE at 180°C. Alkane elimination reaction of Ln(CH2SiMe3)3(THF)2 (Ln=Y, Lu) with 0.5 equiv. of amidine in THF at room temperature afforded the corresponding bimetallic rare earth alkyl complexes (THF)(Me3SiCH2)2LnL1Ln(CH2SiMe3)2(THF) [Ln=Y ( 1 ), Lu ( 2 )], (THF)(Me3SiCH2)2LnL2Ln‐ (CH2SiMe3)2(THF) [Ln=Y ( 3 ), Lu ( 4 )], (THF)(Me3SiCH2)2YL3Y(CH2SiMe3)2(THF) ( 5 ), (THF)(Me3SiCH2)2YL4‐ Y(CH2SiMe3)2(THF) ( 6 ) in 72% –80% isolated yields. These neutral complexes showed activity towards L‐lactide polymerization in toluene at 70°C to give high molecular weight (M>104) and narrow molecular weight distribution (Mw/Mn≦1.40) polymers  相似文献   

15.
The title compound, [Mn2(μ‐O)(C6H3NO3)2(C5H5N)4]·H2O, was isolated from the reaction of 2,6‐pyridine­di­carboxylic acid with [Mn12O12(CH3COO)16(H2O)4] in pyridine. The dimanganese complex has twofold symmetry; the MnIII atoms are bridged by one oxo and two amidate ligands and show compressed octahedral Jahn–Teller distortion. The molecular packing comprises a three‐dimensional structure constructed by means of extensive intermolecular interactions, including three kinds of hydrogen bonds and π–π interactions.  相似文献   

16.
The title saccharinate complexes, aqua[1,2‐benzisothiazol‐3(2H)‐onato 1,1‐dioxide‐N]bis(1,10‐phenanthroline‐N,N′)man­ganese(II) 1,2‐benz­isothia­zol‐3(2H)‐onate 1,1‐dioxide,[Mn(C7H4NO3S)(C12H8N2)2(H2O)](C7H4NO3S), and aqua[1,2‐benz­iso­thiazol‐3(2H)‐onato 1,1‐dioxide‐N]­bis­(2,2′‐bi­pyri­dine‐N,N′)­cobalt(II) 1,2‐benz­iso­thia­zol‐3(2H)‐onate 1,1‐di­oxide, [Co­(C7H4NO3S)­(C10H8N2)2­(H2O)]­(C7H4NO3S), have been prepared and their crystal structures determined at 150 K. The structure of the manganese complex consists of repeated alternating [Mn(phen)2(sac)(H2O)]+ cations and non‐coordinated saccharinate anions. The water molecule, bound to manganese as part of a slightly distorted octahedral arrangement, is hydrogen bonded to an O atom of the SO2 group in the saccharinate counter‐ion. In contrast, the cobalt complex has one pseudo‐octahedral [Co(bipy)2(sac)(H2O)]+ cation, with the cobalt‐bound water molecule hydrogen bonded to the N atom of the accompanying free saccharinate anion.  相似文献   

17.
Novel oligonuclear complexes of Co(II), Ni(II), and Cu(II) with 4-(3,4-dichlorophenyl)-1,2,4-triazole (L) of the composition [M3L10(H2O)2](NO3)6 (M = Co(II), Ni(II)), [Ni3L6(H2O)6]Hal6 (Hal = Cl?, Br?), and [Cu5L16(H2O)2](NO3)10 · 2H2O were synthesized and studied by magnetic susceptibility, electronic and IR spectroscopy, and powder X-ray diffraction methods. All the above complexes are X-ray amorphous. Antifer-romagnetic exchange interactions between the M2+ ions were discovered in the [Co3L10(H2O)2](NO3)6 and [Ni3L10(H2O)2](NO3)6 complexes, whereas ferromagnetic exchange interactions were observed in the complexes [Ni3L6(H2O)6]Cl6, [Ni3L6(H2O)6]Br6, and [Cu5L16(H2O)2](NO3)10 · 2H2O.  相似文献   

18.
The design and synthesis of 3d–4f heterometallic coordination polymers have attracted much interest due to the intriguing diversity of their architectures and topologies. Pyridine‐2,6‐dicarboxylic acid (H2pydc) has a versatile coordination mode and has been used to construct multinuclear and heterometallic compounds. Two isostructural centrosymmetric 3d–4f coordination compounds constructed from pyridine‐2,6‐dicarboxylic acid and 4,4′‐bipyridine (bpy), namely 4,4′‐bipyridine‐1,1′‐diium diaquabis(μ2‐pyridine‐2,6‐dicarboxylato)tetrakis(pyridine‐2,6‐dicarboxylato)bis[4‐(pyridin‐4‐yl)pyridinium]cobalt(II)dieuropium(III) octahydrate, (C10H10N2)[CoEu2(C10H9N2)2(C7H3NO4)6(H2O)2]·8H2O, (I), and 4,4′‐bipyridine‐1,1′‐diium diaquabis(μ2‐pyridine‐2,6‐dicarboxylato)tetrakis(pyridine‐2,6‐dicarboxylato)bis[4‐(pyridin‐4‐yl)pyridinium]cobalt(II)diterbium(III) octahydrate, (C10H10N2)[CoTb2(C10H9N2)2(C7H3NO4)6(H2O)2]·8H2O, (II), were synthesized under hydrothermal conditions and characterized by IR and fluorescence spectroscopy, thermogravimetric analysis and powder X‐ray diffraction. Both compounds crystallize in the triclinic space group P. The EuIII and TbIII cations adopt nine‐coordinated distorted tricapped trigonal–prismatic geometries bridged by three pydc2? ligands. The CoII cation has a six‐coordination environment formed by two pydc2? ligands, two bpy ligands and two coordinated water molecules. Adjacent molecules are connected by π–π stacking interactions to form a one‐dimensional chain, which is further extended into a three‐dimensional supramolecular network by multipoint hydrogen bonds.  相似文献   

19.
A 1?:?1 chelate complex [(C6H5)3PC(COCH3)(COC6H5)-κO,O′]UO2(NO3)2 has been synthesized by reaction of (C6H5)3PC(COCH3)(COC6H5) with UO2(NO3)2?·?6H2O in methanol at room temperature and characterized by elemental analysis, spectroscopy as well as by single-crystal X-ray diffraction. The complex crystallizes in P21/n space group with a?=?10.007(2)?Å, b?=?15.285(7)?Å, c?=?19.20(1)?Å, β?=?91.22(3)°, V?=?2936(2)?Å3, Z?=?4, D c?=?1.847?g?cm?3. In the solid state structure, the dihedral angle [88.1(4)°] between the planes defined by the two quartets of atoms O1 O8 O2 O4 and O6 O5 O3 O7 is close to 90°, as expected for a triangulated dodecahedral geometry around uranium.  相似文献   

20.
Reactions of Fluorophosphoranes with the N,O-Bis(trimethylsilyl) Derivative of o-Aminophenol The reaction of the N,O-bis(trimethylsilyl) derivative of o-aminophenol, 5 , with the tetrafluorophosphoranes, RPF4, 2a–2d , (R = F, Me, Ph, and 1-adamantyl) in a 1:1 molar ratio led to monocyclic-1,3,2λ5-4,5-benzoxazaphospholes, C6H4(O)(NH)PF2R, 6a–6d . 19F n.m.r. spectroscopic studies suggest a trigonal-bipyramidal structure with the C6H4(O)(NH) grouping attached to one axial and one equatorial position at five-coordinate phosphorus for these compounds. The spirophosphoranes, [C6H4(O)(NH)]2PR, 8a – 8d (R = F, Me, Ph, 1-adamantyl) were obtained from the reaction of the appropriate tetrafluorophosphorane, RPF4, 2a – 2d with 5 in a 1:2 molar ratio. The compounds 8a – 8d also result from a spontaneous scrambling reaction of 6a – 6d , with the corresponding tetrafluorophosphoranes, RPF4 ( 2a – 2d ) as the other product. Reaction of the difluorophosphorane, Bu3nPF2 with 5 and with N,N′-dimethyl-N,N′-bis(trimethylsilyl)urea furnished the cyclic, fluorine-free phosphoranes, 9 and 10 , respectively. The phosphonium bromide, Bu3nPFBr, reacted with 5 in a 1:1 and a 2:1 molar ratio to produce the ionic compounds, [C6H4(OSiMe3)(NHPBu3n)]+Br?, 11 , and [C6H4(OPBu3n)HNPBu3n]2+ 2 Br?, 12 , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号