首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The rise of quantum information theory has lent new relevance to experimental tests for non-classicality, particularly in controversial cases such as adiabatic quantum computing superconducting circuits. The Leggett-Garg inequality is a “Bell inequality in time” designed to indicate whether a single quantum system behaves in a macrorealistic fashion. Unfortunately, a violation of the inequality can only show that the system is either (i) non-macrorealistic or (ii) macrorealistic but subjected to a measurement technique that happens to disturb the system. The “clumsiness” loophole (ii) provides reliable refuge for the stubborn macrorealist, who can invoke it to brand recent experimental and theoretical work on the Leggett-Garg test inconclusive. Here, we present a revised Leggett-Garg protocol that permits one to conclude that a system is either (i) non-macrorealistic or (ii) macrorealistic but with the property that two seemingly non-invasive measurements can somehow collude and strongly disturb the system. By providing an explicit check of the invasiveness of the measurements, the protocol replaces the clumsiness loophole with a significantly smaller “collusion” loophole.  相似文献   

3.
The formalism of quantum systems with diagonal singularities is applied to describe scattering processes. Well-defined states are obtained for infinite time, which are related to a “weak form” of intrinsic irreversibility. Real and complex generalized spectral decompositions of the Liouville-von Neumann superoperator are computed. The physical meaning of “Gamow states” is discussed.  相似文献   

4.
We show that the two-parameter standard quantum GL(2, C) (except for roots of unity) and the Jordanian quantum GL(2, C) have the “same” representation theory as the (ordinary) group GL(2, C), and that they are the only quantum groups with this property. Presented at the 9th Colloquium “Quantum Groups and Integrable Systems”, Prague, 22–24 June 2000.  相似文献   

5.
Quantum theory has the property of “local tomography”: the state of any composite system can be reconstructed from the statistics of measurements on the individual components. In this respect the holism of quantum theory is limited. We consider in this paper a class of theories more holistic than quantum theory in that they are constrained only by “bilocal tomography”: the state of any composite system is determined by the statistics of measurements on pairs of components. Under a few auxiliary assumptions, we derive certain general features of such theories. In particular, we show how the number of state parameters can depend on the number of perfectly distinguishable states. We also show that real-vector-space quantum theory, while not locally tomographic, is bilocally tomographic.  相似文献   

6.
We introduce and study two new examples of noncommutative spheres: the half-liberated sphere, and the free sphere. Together with the usual sphere, these two spheres have the property that the corresponding quantum isometry group is “easy”, in the representation theory sense. We present as well some general comments on the axiomatization problem, and on the “untwisted” and “non-easy” case.  相似文献   

7.
We rigorously analyze the stability of the “quasi-classical” dynamics of a Bose-Einstein condensate with repulsive and attractive interactions, trapped in an effective 1D toroidal geometry. The “classical” dynamics, which corresponds to the Gross-Pitaevskii mean field theory, is stable in the case of repulsive interaction, and unstable (under some conditions) in the case of attractive interaction. The corresponding quantum dynamics for observables is described by using a closed system of linear partial differential equations. In both cases of stable and unstable quasi-classical dynamics the quantum effects represent a singular perturbation to the quasi-classical solutions, and are described by the terms in these equations which consist of a small quasi-classical parameter which multiplies high-order “spatial” derivatives. We demonstrate that as a result of the quantum singularity for observables a convergence of quantum solutions to the corresponding classical solutions exists only for limited times, and estimate the characteristic time-scales of the convergence.  相似文献   

8.
Transition Probability (fidelity) for pairs of density operators can be defined as a “functor” in the hierarchy of “all” quantum systems and also within any quantum system. The Introduction of “amplitudes” for density operators allows for a more intuitive treatment of these quantities, also pointing to a natural parallel transport. The latter is governed by a remarkable gauge theory with strong relations to the Riemann-Bures metric.  相似文献   

9.
From the philosophical viewpoint, two interpretations of the quantum measurement process are possible: According to the first interpretation, when we measure an observable, the measured system moves into one of the eigenstates of this observable (“the wave function collapses”); in other words, the universe “branches” by itself, due to the very measurement procedure, even if we do not use the result of the measurement. According to the second interpretation, the system simply moves into amixture of eigenstates, and the actual “branching” occurs only when anobserver reads the measurement results. According to the first interpretation, a mixture is a purely mathematical construction, and in the real physical world, a mixture actually means that the system is in one of the “component” states. In this paper, we analyze this difference from the viewpoint ofalgorithmic information theory; as a result of this analysis, we argue that onlypure quantum states are fundamental, while mixtures are simply useful mathematical constructions.  相似文献   

10.
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem(1) thatd-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this geneal appoach to quantum spin systems are reviewed. A new Monte Carlo method, “thermo field Monte Carlo method,” is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures. Invited talk presented at “Frontiers of Quantum Monte Carlo,” Los Alamos National Laboratory, September 3–6, 1985.  相似文献   

11.
The famous “spooky action at a distance” in the EPR-scenario is shown to be a local interaction, once entanglement is interpreted as a kind of “nearest neighbor” relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the “nearest neighbor” relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, “position” becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the “weird” aspects, like the particle-wave duality, the non-locality of entanglement, or the “mystery” of the double-slit experiment, disappear. Furthermore, this picture circumvents the restrictions set by Bell’s inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics. PACS: 03.65.Ud, 04.60.Nc  相似文献   

12.
This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the claim that the quantum nature of a preparation device cannot legitimately be ignored. Both Bayesians and proponents of the OPV regard the time dependence of a quantum state as the continuous dependence on time of an evolving state of some kind. This leads to a false dilemma: quantum states are either objective states of nature or subjective states of belief. In reality they are neither. The present paper views the aforesaid dependence as a dependence on the time of the measurement to whose possible outcomes the quantum state serves to assign probabilities. This makes it possible to recognize the full implications of the only testable feature of the theory, viz., the probabilities it assigns to measurement outcomes. Most important among these are the objective fuzziness of all relative positions and momenta and the consequent incomplete spatiotemporal differentiation of the physical world. The latter makes it possible to draw a clear distinction between the macroscopic and the microscopic. This in turn makes it possible to understand the special status of measurements in all standard formulations of the theory. Whereas Bayesians have written contemptuously about the “folly” of conjoining “objective” to “probability,” there are various reasons why quantum-mechanical probabilities can be considered objective, not least the fact that they are needed to quantify an objective fuzziness. But this cannot be appreciated without giving thought to the makeup of the world, which Bayesians refuse to do. Doing this on the basis of how quantum mechanics assigns probabilities, one finds that what constitutes the macroworld is a single Ultimate Reality, about which we know nothing, except that it manifests the macroworld or manifests itself as the macroworld. The so-called microworld is neither a world nor a part of any world but instead is instrumental in the manifestation of the macroworld. Quantum mechanics affords us a glimpse “behind” the manifested world, at stages in the process of manifestation, but it does not allow us to describe what lies “behind” the manifested world except in terms of the finished product—the manifested world, for without the manifested world there is nothing in whose terms we could describe its manifestation.  相似文献   

13.
Research into microdisk lasers demonstrates new achievements both in the technology and in the associated physical effects and applications. Melting and rounding of the disk edge boosts the Q-factors due to improved surface smoothness. In-plane cavity shape is widely used as a design instrument. Optimal shaping of pumped area lowers the threshold power. Photonic molecules made of several microdisks as “photonic atoms” show lasing at several closely spaced frequencies. A microdisk with a single quantum dot as an active region is considered as the most promising system for realisation of a single photon emitter necessary for quantum computing. These new effects and devices can be simulated with accurate numerical techniques, developed recently for “warm-cavity” linear modelling, that are able to bring a new vision of the physics of lasing.  相似文献   

14.
Spontaneous transitions between bound states of an atomic system, “Lamb Shift” of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations (fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system “quantum system (QS) + FE” is described in the framework of the stochastic differential equation (SDE) of Langevin-Schr?dinger (L-Sch) type, and is defined on the extended space R 3 R {ξ}, where R 3 and R {ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.  相似文献   

15.
In this paper we give a logical analysis of both classical and quantum correlations. We propose a new logical system to reason about the information carried by a complex system composed of several parts. Our formalism is based on an extension of epistemic logic with operators for “group knowledge” (the logic GEL), further extended with atomic sentences describing the results of “joint observations” (the logic LCK). As models we introduce correlation models, as a generalization of the standard representation of epistemic models as vector models. We give sound and complete axiomatizations for our logics, and we use this setting to investigate the relationship between the information carried by each of the parts of a complex system and the information carried by the whole system. In particular we distinguish between the “distributed information”, obtainable by simply pooling together all the information that can be separately observed in any of the parts, and “correlated information”, obtainable only by doing joint observations of the parts (and pooling together the results). Our formalism throws a new light on the difference between classical and quantum information and gives rise to an informational-logical characterization of the notion of “quantum entanglement”.  相似文献   

16.
The quantum Zeno effect (QZE) is often associated with the ironic maxim, “a watched pot never boils”, although the notion of “watching” suggests a continuous activity at odds with the usual (pulsed measurement) presentation of the QZE. We show how continuous watching can provide the same halting of decay as the usual QZE, and, for incomplete hindrance, we provide a precise connection between the interval between projections and the response time of the continuous observer. Thus, watching closely, but not so closely as to halt the “boiling”, is equivalent to—gives the same degree of partial hindrance as—pulsed measurements with a particular pulsing rate. Our demonstration is accomplished by treating the apparatus for the continuous watching as a fully quantum object. This in turn allows us a second perspective on the QZE, in which it is the modified level structure of the combined system/apparatus Hamiltonian that slows the decay. This and other considerations favor the characterization “dominated time evolution” for the QZE.  相似文献   

17.
A theory of the discrete photodetection of quantum jumps on the V configuration of atomic levels has been developed. A three-level source atom is placed in a cavity excited by a resonance fluorescence field. The cavity is tuned to exact resonance with an atomic transition. The cavity mode state is tested by a flux of unexcited (at the entrance) probe atoms passing through the cavity. The energy states of the outgoing probe atoms are detected by ionization chambers, which are assumed ideal. This a posteriori statistical information is indirectly related to the numerical characteristics of a measured quantum system consisting of the source atom and cavity mode. The “tuning” conditions for a discrete photodetector, i.e., the rules for choosing the parameters and durations of the interactions of the cavity mode with the probe and source atoms, intensities of the pump and probe fields that are necessary for observing quantum jumps from the “bright” state to the “dark” one and vice versa, have been determined. A two-state model that describes the dynamics of a quantum jump has been analyzed. The formulas have been obtained for the observable characteristics of quantum jumps: the mean residence time of the quantum system in quasistationary states (durations of the bright and dark periods), probabilities of quantum jumps, mean excitation levels of the quantized cavity mode, etc.  相似文献   

18.
We illustrate the crucial role played by decoherence (consistency of quantum histories) in extracting consistent quantum probabilities for alternative histories in quantum cosmology. Specifically, within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model sourced with a free massless scalar field, we calculate the probability that the universe is singular in the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expanding and contracting singular branches. A naive assessment of the behavior of quantum states which are superpositions of expanding and contracting universes suggests that a “quantum bounce” is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical solution throughout its history. However, a more careful consistent histories analysis shows that for arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum universe encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt universe is inevitably singular, and a “quantum bounce” is thus not possible in these models.  相似文献   

19.
Sorkin’s recent proposal for a realist interpretation of quantum theory, the anhomomorphic logic or coevent approach, is based on the idea of a “quantum measure” on the space of histories. This is a generalisation of the classical measure to one which admits pair-wise interference and satisfies a modified version of the Kolmogorov probability sum rule. In standard measure theory the measure on the base set Ω is normalised to one, which encodes the statement that “Ω happens”. Moreover, the Kolmogorov sum rule implies that the measure of any subset A is strictly positive if and only if A cannot be covered by a countable collection of subsets of zero measure. In quantum measure theory on the other hand, simple examples suffice to demonstrate that this is no longer true. We propose an appropriate generalisation, the quantum cover, which in addition to being a cover of A, satisfies the property that if the quantum measure of A is non-zero then this is also the case for at least one of the elements in the cover. Our work implies a non-triviality result for the coevent interpretation for Ω of finite cardinality, and allows us to cast the Peres-Kochen-Specker theorem in terms of quantum covers.  相似文献   

20.
Einstein, in his “Zur Elektrodynamik bewegter K?rper”, gave a physical (operational) meaning to “time” of a remote event in describing “motion” by introducing the concept of “synchronous stationary clocks located at different places”. But with regard to “place” in describing motion, he assumed without analysis the concept of a system of co-ordinates.In the present paper, we propose a way of giving physical (operational) meaning to the concepts of “place” and “co-ordinate system”, and show how the observer can define both the place and time of a remote event. Following Einstein, we consider another system “in uniform motion of translation relatively to the former”. Without assuming “the properties of homogeneity which we attribute to space and time”, we show that the definitions of space and time in the two systems are linearly related. We deduce some novel consequences of our approach regarding faster-than-light observers and particles, “one-way” and “two-way” velocities of light, symmetry, the “group property” of inertial reference frames, length contraction and time dilatation, and the “twin paradox”. Finally, we point out a flaw in Einstein’s argument in the “Electrodynamical Part” of his paper and show that the Lorentz force formula and Einstein’s formula for transformation of field quantities are mutually consistent. We show that for faster-than-light bodies, a simple modification of Planck’s formula for mass suffices. (Except for the reference to Planck’s formula, we restrict ourselves to Physics of 1905.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号