首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Azo dyes are one of the synthetic dyes that have been used in many textile industries. Azo dye and their intermediate products are toxic, carcinogenic, and mutagenic to aquatic life. Removal of azo dyes is one of the main challenges before releasing the wastes discharged by textile industries. Photocatalytic degradation of azo dyes by nanoparticles is one of the environment‐friendly methods used for the removal of dyes from textile effluents. Therefore, this study focused on degradation of azo dye, Direct Red 264. Photocatalytic degradation of DR 264 azo dye was investigated using CdS and Ag/CdS nanoparticles immobilized on a cement bed in a continuous‐flow photoreactor under UV‐C exposure. The effect of the parameters of type and mass of catalyst, temperature, flow rate, dye concentration, and light intensity were evaluated for azo dye removal. Under optimal conditions, photocatalytic degradation of DR 264 azo dye using Ag/CdS nanoparticles immobilized on a cement bed in a continuous‐flow photoreactor obtained an efficiency of 99.99%. A developed kinetic model was proposed based on the intrinsic elementary reactions. The proposed model is in a good agreement with the Langmuir–Hinshelwood (L–H) equation. The pseudo–steady‐state approximation has considered for the concentration of hydroxyl radicals associated with the L–H model under certain conditions and explains consistently the dependence of the apparent kinetic parameter, kobs (the reaction rate constant), and KR (the adsorption equilibrium constant) with the light intensity. Based on the model, kobs for Ag/CdS was greater than the CdS nanoparticles.  相似文献   

2.
Oxidation by photo-Fenton like reaction is an economically feasible process for degradation of a variety of hazardous pollutants in wastewater from dyeing and printing industries. In present study, the progress of the reaction has been monitored spectrophotometrically. An effort has been made to observe the effect of various inorganic additives like sodium thiosulfate and potassium bromate. The effect of variation of different parameters such as pH, concentrations of dye, Fe3+ ion and additives, amount of H2O2, and light intensity on the rate of photodegradation was also observed. A tentative mechanism for the reaction has been proposed.  相似文献   

3.
Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag–Ag2O–ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag–Ag2O–ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV–Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag–Ag2O–ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag–Ag2O–ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag–Ag2O–ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.  相似文献   

4.
《中国化学快报》2021,32(11):3450-3456
Bandgap engineering through single-atom site binding on semiconducting photocatalyst can boost the intrinsic activity, selectivity, carrier separation, and electron transport. Here, we report a mixed-valence Ag(0) and Ag(I) single atoms co-decorated semiconducting chalcopyrite quantum dots (Ag/CuFeS2 QDs) photocatalyst. It demonstrates efficient photocatalytic performances for specific organic dye (rhodamine B, denoted as RhB) as well as inorganic dye (Cr(VI)) removal in water under natural sunlight irradiation. The RhB degradation and Cr(VI) removal efficiencies by Ag/CuFeS2 QDs were 3.55 and 6.75 times higher than those of the naked CuFeS2 QDs at their optimal pH conditions, respectively. Besides, in a mixture of RhB and Cr(VI) solution under neutral condition, the removal ratio has been elevated from 30.2% to 79.4% for Cr(VI), and from 95.2% to 97.3% for RhB degradation by using Ag/CuFeS2 QDs after 2 h sunlight illumination. The intrinsic mechanism for the photocatalytic performance improvement is attributed to the narrow bandgap of the single-atomic Ag(I) anchored CuFeS2 QDs, which engineers the electronic structure as well as expands the optical light response range. Significantly, the highly active Ag(0)/CuFeS2 and Ag(I)/CuFeS2 effectively improve the separation efficiency of the carriers, thus enhancing the photocatalytic performances. This work presents a highly efficient single atom/QDs photocatalyst, constructed through bandgap engineering via mixed-valence single noble metal atoms binding on semiconducting QDs. It paves the way for developing high-efficiency single-atom photocatalysts for complex pollutions removal in dyeing wastewater environment.  相似文献   

5.
CeO2/zeolite nanocomposite was successfully prepared by the mixing-calcination method. The structural characteristics of photocatalyst were investigated by XRD, SEM, TEM and EDX. Photocatalytic degradation experiments were carried out with varying amounts of the CeO2/zeolite, the ratio of 3:1 (CeO2/zeolite) was exhibited excellent photocatalytic activity towards dye degradation. Synergistic effect of CeO2/zeolite played a key role in photocatalytic degradation. The main reactive oxygen species was determined by trapping experiments. Additionally, the recyclability was tested up to the fourth cycle. The CeO2/zeolite nanocomposite is a promising photocatalyst for removing trace and unprocessed organic contaminants in the industrial dye waste water treatment. The efficiency of CeO2/zeolite nanocomposite offers a potential economical route to degrade organic contaminants and recovering photocatalyst simultaneously.  相似文献   

6.
Nanosized magnetic Fe3O4 synthesized via sonochemical route was used as a photocatalyst for the degradation of azo dyes, methyl red and congo red. The novelty of the photo catalyst is its easy recovery by magnetic force and its recycling ability due to its long-term stability, in addition to its cost effectiveness, non-toxicity and non-carcinogenicity. A detailed feasibility study has been carried out on the photocatalytic degradation of the azo dyes at various pH and at various concentrations of photocatalyst, dye and H2O2. The presence of photocatalyst is found to significantly accelerate the degradation of azo dyes and the optimal dosage is found to be 0.075 and 0.2?g/l for methyl red and congo red, respectively. Langmuir?CHinshelwood kinetic analysis revealed pseudo-first-order kinetics for the photocatalytic degradation of the dyes and the degradation products were identified using spectral analysis. The degradation study revealed the following order of reactivity: Photo-Fe3O4?>?Photo-H2O2?>?Fe3O4?>?H2O2.  相似文献   

7.
《Arabian Journal of Chemistry》2020,13(11):8262-8270
The Zn0.3Al0.4O4.5 nanoparticles (ZnAlONPs) with size of 70–90 nm are used as an efficient photocatalyst for formaldehyde (HCHO) degradation and effective adsorbent for the removal of eriochrome black-T (EBT) dye from synthetic aqueous solution. Degradation of HCHO reactions were studied using TiO2 (homemade), TiO2 (P-25) and ZnAlONPs by irradiating under 18 W daylight lamp source for photocatalytic degradation. The HCHO degradation rate is about 67, 76 and 89% for TiO2 (homemade), TiO2 (P25) and ZnAlONPs during 2 h reaction, respectively at initial formaldehyde gas concentration of 20 ppm. Maximum adsorption capacity was optimized by changing the parameters such as pH, EBT concentration and adsorbent dosage. A  200 mg of ZnAlONPs are useable for quick removal of EBT (>95%). Langmuir isotherm model showed a maximum adsorption capacity of 90.90 mgg−1. The ZnAlONPs could be successfully reused upto 5th adsorption/desorption cycle for EBT dye removal from water samples.  相似文献   

8.
Structure and physico‐chemical properties of a photocatalyst, especially surface area and absorption ability, were correlated to catalytic activities in photodegradation of dye pollutants in water. In this investigation photocatalytic degradation of azo dye Direct yellow 12 (Chrysophenine G) in water was studied. Titanium(IV) oxide was supported on Clinoptilolite (CP) (Iranian Natural Zeolite) using solid‐state dispersion (SSD) method. The results show that the TiO2/Clinoptilolite (SSD) is an active photocatalyst. The maximum effect of photo degradation was observed at 10 wt.% TiO2, 90 wt.% Clinoptilolite. A first order reaction with k = 0.0108 min?1 was observed. The effects of some parameters such as pH, amount of photocatalyst, initial concentration of dye were examined.  相似文献   

9.
In this work, a new visible-light-responsive photocatalyst, mercury oxide (HgO) was successfully developed. Its activity is significantly higher than that of the highly efficient photocatalyst, Ag3PO4 in degradation of rhodamine B (RhB) dye under irradiation of visible light. The HgO photocatalyst can be reused for at least three cycles without obvious loss of its activity in the degradation experiments. It was found that the RhB degradation rate is significantly influenced by the dye solution pH. The ultrahigh photocatalytic activity of HgO is attributed to its strong oxidization-ablility of the photogenerated holes, and high separation-possibility of the photogenerated carriers.  相似文献   

10.
These days, an important concern in water contamination is the remaining dyes from various sources (for instance, dye and dye intermediates industries, pulp and paper industries, textile industries, craft bleaching industries, tannery, and pharmaceutical industries, etc.), and a broad range of persistent organic contamination has been entered to the wastewater treatment systems or natural water supplies. Indeed, it is extremely hazardous and toxic to the living organism. Therefore, it is necessary to remove these organic pollutants before releasing them into the environment. Photocatalysis is a quickly growing technology for sewage procedures. For this purpose, Cu2HgI4 nanostructures were prepared via facile, and cost-effective sonochemical method. The effect of varied circumstances, such as various surfactants, sonication power, and sonication time was considered on the crystallinity, structure, shape, and particle size of products. Cu2HgI4 possesses a suitable bandgap (2.2 eV) in the visible area. The photocatalytic performance of the Cu2HgI4 was surveyed for the elimination of various organic dyes under visible radiation and exposed that this compound could degrade and remove methyl orange about 94.2% in an acidic medium after 160 min under visible light. Besides, the result showed that various parameters, including, pH, dye concentration, types of dyes, catalyst dosages, and time of irradiation affected the photocatalytic efficiency.  相似文献   

11.
A model for the decomposition of azure-B by photo-Fenton reagent in the presence of ultrasound in homogeneous aqueous solution has been described. The photochemical decomposition rate of azure-B is markedly increased in the presence of ultrasound. It is a rather inexpensive reagent for wastewater treatment. The effect of different variables like the concentration of ferric ion, concentration of dye, hydrogen peroxide, pH, light intensity etc. on the reaction rate has been observed. The progress of the sono-photochemical degradation was monitored spectrophotometrically. The optimum sono-photochemical degradation conditions were experimentally determined. The results showed that the dye was completely oxidized and degraded into CO2 and H2O. A suitable tentative mechanism for sono-photochemical bleaching of azure-B by sono-photo-Fenton’s reaction has been proposed.  相似文献   

12.
In this investigation photocatalytic degradation of azo dye Disperse yellow 23 in water was studied. Titanium (IV) oxide was supported on Clinoptilolite (CP) (Iranian Natural Zeolite) using the solid-state dispersion (SSD) method. The results show that the TiO2/Clinoptilolite (SSD) is an active photocatalyst. The maximum effect of photo degradation was observed at 10 wt % TiO2, 90 wt % Clinoptilolite. A first order reaction with k = 0.0119 min?1 was observed. The effects of some parameters such as pH, amount of photocatalyst, and the initial concentration of dye were examined.  相似文献   

13.
Degradation of Congo Red (CR) a di azo dye in aqueous solution is investigated by a Photo Fenton like process using Fe3+ ions as the catalyst and peroxy disulfate as the oxidant. The influence of various reaction parameters like, concentration of Fe3+ ions, concentration of the dye, concentration of ammonium persulfate, pH of the solution and the presence of hydroxyl radical scavenger are studied and optimal conditions are reported. The degradation rate decreased at higher dye concentration and at higher pH. The rate constant (k), catalytic efficiency (kc) and process efficiency (Φ) are evaluated for different concentration of Fe3+ ions. The degradation of CR by the photo Fenton like process leads to the formation of 4-Amino, 3-azo naphthalene sulphonic acid, dihydroxy substituted naphthalene, dihydroxy substituted biphenyl, phenol, quinol etc., as intermediates, based on which probable degradation mechanism is proposed. These results show that a photo Fenton like process could be useful technology for the mineralization of di azo dyes under lower concentration of iron in acidic conditions. The present process is advantageous as it lowers the sludge production resulting from the iron comple   相似文献   

14.
Elemental sulfur is a low-cost and abundant substance as one of the largest by-products of the oil industry which was widely used in many industrial activities. Cyclo-octasulfur (S8) is one of the sulfur allotropes that is a very stable substance in standard conditions. In this study, we report a low-cost and fast method for the degradation of methyl violet in water under visible light and also sunlight by using elemental sulfur (S8). The results show that sulfur is a good photocatalyst which operates under visible light and can be utilized for degradation of methyl violet. The photocatalytic degradation of methyl violet in acidic, neutral, and alkaline media was investigated, and it was found that the photocatalytic efficiency increases dramatically in alkaline solution. The effects of the initial concentration of the dye, photocatalyst dosage, solution pH, and photocatalyst reusability were investigated. The kinetics of the reaction were studied in detail, and the photocatalytic rate equation was presented.  相似文献   

15.
To enhance the degradation of colour and chemical oxygen demand using photocatalytic activity, Graphene–CuO–Co3O4 hybrid nanocomposites were synthesized using an in situ surfactant free facile hydrothermal method. The photocatalytic degradation of synthetic anionic dyes, methyl orange (MO) and Congo red (CR), and industrial textile wastewater dyes under visible light irradiation was evaluated. The synthesized nanocomposite was characterized structurally and morphologically using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscope, and Fourier transform infrared spectroscopy. Evaluation of the colour indicated complete removal at 15 min of irradiation for the MO and CR dyes, with 99% degradation efficiency. The reaction time for the primary effluent wastewater dye was 60 min for 81% dye removal. In contrast, a longer reaction time was required to meet the national discharge regulation for the raw wastewater dye, 300 min for 60% dye removal. The mechanism for dye degradation using the Graphene–CuO–Co3O4 hybrid nanocomposite was elucidated using the Langmuir–Hinshelwood model, and the rate constant and half-life of the degradation process were calculated. The results demonstrate that photocatalytic degradation using a hybrid nanocomposite and visible light irradiation is a sustainable alternative technology for removing colour from wastewater dye.  相似文献   

16.
Zinc oxide (ZnO) nanostructures were synthesized via a one-step solid-state reaction approach in ammonia (NH3) gas environment with different temperature ramp rates. The so-formed nanostructures were characterized using X-ray diffraction (XRD) for phase identification, where the typical wurtzite hexagonal structure was observed. Scanning electron microscopy (SEM) confirmed the particle size to be in the range 45–50 nm, the same as calculated by the XRD pattern for the ramp rate of 10 °C/min. Energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the chemical purity of the samples. The photoluminescence (PL) spectrum indicated multiple near-band-edge emissions and energy-band emissions. Then, these ZnO nanomaterials were used for the degradation of crystal violet (CV) dye under UV light irradiation. The CV solution was completely degraded in 2 hr. The initial photocatalyst and dye amounts of 0.2 g/100 ml and 0.5 mg/L, respectively, were found to be the optimum values for maximum degradation efficiency. The ZnO-based photocatalyst was stable up to three cycles of reuse. These results indicate that the high surface area and porosity of the nanomaterials are responsible for the high efficiency, which was confirmed by specific surface area analysis.  相似文献   

17.
本文以羟丙基纤维素(HPC)作为分散剂,运用沉淀法制备出了粒径均匀的ZnO颗粒.通过透射电子显微镜(TEM),X射线衍射(XRD),紫外可见光吸收光谱,光致发光谱(PL)对ZnO进行了性能表征,并探讨了其形成机理及制备中的影响因素.利用纳米ZnO作为光催化剂对有机染料罗丹明B进行了光降解实验,实验结果表明,此方法制备的ZnO具有良好的光催化性能,有望在治理环境污染等领域具有良好的应用.  相似文献   

18.
Heterogeneous photocatalytic removal of methyl-red (MR) dye from liquid phase was done using mixed-phase nanocrystalline TiO2 for enhancement its photochemical decomposition capabilities. The mixed-phase nanocrystalline TiO2 was characterized using various techniques to investigate its physicochemical properties. The photocatalytic efficiency of mixed-phase nanocrystalline titania was explored by monitoring the photochemical decay of aqueous MR dye. The results showed that the as-prepared mixed-phase nanocrystalline TiO2 was excellent for degradation of MR molecule, and the impurity of rutile form increases the photochemical activity by a by a factor of 3. The reaction mechanism was proposed and the results demonstrate that the photocatalytic oxidation reaction followed a pseudo-first-order kinetics.  相似文献   

19.
Alkali tantalates and niobates are listed as important photocatalysts for the development of renewable energy technologies and environmental remediation. Herein, the photocatalytic degradation of methylene blue dye in aqueous solution by using highly crystalline particles with perovskite‐like structures, LiTaO3, LiNbO3, NaTaO3, NaNbO3, KNbO3, and KTaO3, is investigated. It is demonstrated that ferroelectric KNbO3 is the most efficient photocatalyst of those tested because it combines an electronic band structure that can respond successfully to UVA light with a relatively high surface energy that enhances the catalytic properties. Additionally, the built‐in electric field due to internal polarization of ferroelectric particles may contribute to the unique properties of this functional photocatalyst. This work provides an ideal platform for the rational design of more efficient ferroelectric‐based photocatalytic devices.  相似文献   

20.
Disposal of palm oil mill effluent (POME), which is highly polluting from the palm oil industry, needs to be handled properly to minimize the harmful impact on the surrounding environment. Photocatalytic technology is one of the advanced technologies that can be developed due to its low operating costs, as well as being sustainable, renewable, and environmentally friendly. This paper reports on the photocatalytic degradation of palm oil mill effluent (POME) using a BiVO4 photocatalyst under UV-visible light irradiation. BiVO4 photocatalysts were synthesized via sol-gel method and their physical and chemical properties were characterized using several characterization tools including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface area analysis using the BET method, Raman spectroscopy, electron paramagnetic resonance (EPR), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of calcination temperature on the properties and photocatalytic performance for POME degradation using BiVO4 photocatalyst was also studied. XRD characterization data show a phase transformation of BiVO4 from tetragonal to monoclinic phase at a temperature of 450 °C (BV-450). The defect site comprising of vanadium vacancy (Vv) was generated through calcination under air and maxima at the BV-450 sample and proposed as the origin of the highest reaction rate constant (k) of photocatalytic POME removal among various calcination temperature treatments with a k value of 1.04 × 10−3 min−1. These findings provide design guidelines to develop efficient BiVO4-based photocatalyst through defect engineering for potential scalable photocatalytic organic pollutant degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号