首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
Axisymmetric bending of functionally graded circular magneto-electro-elastic plates of transversely isotropic materials is analyzed based on linear three-dimensional theory of elasticity coupled with magnetic and electric fields. The transverse loads are expanded in Fourier-Bessel series and therefore can be arbitrarily distributed along the radial direction. The radial distributions of the displacements are assumed in combination of Fourier-Bessel series and polynomials as well as the electric potential and magnetic potential. If the material properties obey the exponential law along the thickness of the plate, two three-dimensional exact solutions for two unusual boundary conditions can be derived since they satisfy the governing equations and specified boundary conditions point by point. For simply supported or clamped boundary, the obtained solutions satisfy the governing equations exactly and the boundary conditions approximately. A layer wise model is also introduced to treat with the plates whose material property components vary independently and arbitrarily along the thickness of the plates. The numerical results are finally tabulated and plotted to demonstrate the presented method and agree well with those from finite element methods.  相似文献   

4.
Kiev Highway Institute. Special Design Office, Institute of Mechanics, Academy of Sciences of the Ukarinian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 25, No. 6, pp. 32–35, June, 1989.  相似文献   

5.
6.
7.
8.
9.
10.
In the present article, axisymmetric bending and stretching of functionally graded (FG) circular plates subjected to uniform transverse loading based on fourth-order shear deformation plate theory (FOST) have been studied. Using a fourth-order shear deformation theory, the solutions for deflection and rotation functions of FG plates are presented in terms of the corresponding quantities for a homogeneous plate using the classical plate theory (CPT), from which solutions one can easily obtain the FOST solutions for axisymmetric bending of FG circular plates. It is assumed that the effective mechanical properties of the functionally graded plates through the thickness are continuous functions of the volume fractions of the constituent parts which are themselves defined by a power-law function. Numerical results for maximum deflection and shear stress are presented for various percentages of ceramic–metal volume fractions. These results are also compared with those obtained from the first-order shear deformation plate theory of Mindlin (FST), the third-order shear deformation plate theory of Reddy (TST) as well as the exact three-dimensional elasticity solution. It is found that although the maximum deflections obtained using FOST and TST are close to each other, the through-thickness shear stress is predicted more accurately by the FOST formulation than by the TST.  相似文献   

11.
12.
To find the interaction between spherical shells at the frequency of their free oscillations in a fluid, we examine the problem of axisymmetric oscillations of two identical spherical shells under the assumption that the shell centers of curvature do not coincide. The solution is found for the cases of a compressible and an incompressible fluid by the series method with reduction to an infinite system of linear equations. A mathematical justification of the method used is presented.  相似文献   

13.
Summary The displacements within a wide curved bar made of perfectly plastic, compressible material and subjected to a pure bending moment are presented for all the possible cases.  相似文献   

14.
15.
Large eddy simulations of subsonic round jets are carried out using high order compact finite difference scheme and an explicit filtering based approximate deconvolution method. The jets have a Mach number of 0.9 and Reynolds number of 4.5×105 based on jet diameter and centerline velocity at inflow. Results obtained for the mean flow and turbulence intensities agree well with those in existing literature. We also study the effects of co-flow velocity ratio on the flow physics. Increase in potential core length and decrease in spreading rate of jet is observed in the presence of co-flow. The effects of co-flow velocity ratio on the axial Reynolds stress and turbulent kinetic energy budgets are also presented. It is observed that increasing co-flow velocity ratio leads to reduction in the turbulence intensities and near-field sound levels.  相似文献   

16.
17.
Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 27, No. 8, pp. 74–80, August, 1991.  相似文献   

18.
19.
20.
A theoretical study on a linear hydroelastic vibration of two annular plates coupled with a bounded fluid is presented. The proposed method, based on the Rayleigh–Ritz method and the finite Hankel transform, is verified through a finite element analysis by using a commercial computer code, with an excellent accuracy. It is assumed that plates with an unequal thickness and with an unequal inner radius are clamped along their edges and an inviscid compressible fluid fills the space between the annular plates and the outer rigid vessel. When the two annular plates are identical, distinct in-phase and out-of-phase modes are observed. By increasing the difference in the plate thickness, the symmetric in-phase and out-of-phase modes with respect to the middle plane of the system are gradually shifted to pseudo in-phase and out-of-phase modes, and eventually they are changed to mixed modes. It is found that the natural frequencies decrease with an increase of the fluid compressibility, and additional modes due to a fluid concentration are observed when the plates are coupled with a compressible fluid. The fluid compressibility effect on the natural frequency is dominant in the out-of-phase modes and the higher modes. Also, the effects of the fluid thickness or the distance between the plates and the inner radius of the plates on the natural frequencies of the wet modes are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号