首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, Sinc-collocation method is used to approximate the solution of weakly singular nonlinear Fredholm integral equations of the first kind. Some of the important advantages of this method are rate of convergence of an approximate solution and simplicity for performing even in the presence of singularities. The convergence analysis of the proposed method is proved by preparing the theorems which show the errors decay exponentially and guarantee the applicability of that. Finally, several numerical examples are considered to show the capabilities, validity, and accuracy of the numerical scheme.  相似文献   

2.
The Gauss product quadrature rules and collocation method are applied to reduce the second-kind nonlinear two-dimensional Fredholm integral equations (FIE) to a nonlinear system of equations. The convergence of the proposed numerical method is proved under certain conditions on the kernel of the integral equation. An iterative method for approximating the solution of the obtained nonlinear system is provided and its convergence is proved. Also, some numerical examples are presented to show the efficiency and accuracy of the proposed method.  相似文献   

3.
This paper deals with the numerical solution of the integral equations of linear second kind Volterra–Fredholm. These integral equations are commonly used in engineering and mathematical physics to solve many of the problems. A hybrid of Bernstein and improved block-pulse functions method is introduced and used where the key point is to transform linear second-type Volterra–Fredholm integral equations into an algebraic equation structure that can be solved using classical methods. Numeric examples are given which demonstrate the related features of the process.  相似文献   

4.
In this paper, a computational scheme is proposed to estimate the solution of one- and two-dimensional Fredholm-Hammerstein integral equations of the second kind. The method approximates the solution using the discrete Galerkin method based on the moving least squares (MLS) approach as a locally weighted least squares polynomial fitting. The discrete Galerkin technique for integral equations results from the numerical integration of all integrals in the system corresponding to the Galerkin method. Since the proposed method is constructed on a set of scattered points, it does not require any background meshes and so we can call it as the meshless local discrete Galerkin method. The implication of the scheme for solving two-dimensional integral equations is independent of the geometry of the domain. The new method is simple, efficient and more flexible for most classes of nonlinear integral equations. The error analysis of the method is provided. The convergence accuracy of the new technique is tested over several Hammerstein integral equations and obtained results confirm the theoretical error estimates.  相似文献   

5.
The author proposes a numerical procedure in order to approximate the solution of a class of Fredholm integral equations of the third kind on unbounded domains. The given equation is transformed in a Fredholm integral equation of the second kind. Hence, according to the integration interval, the equation is regularized by means of a suitable one-to-one map or is transformed in a system of two Fredholm integral equations that are subsequently regularized. In both cases a Nyström method is applied, the convergence and the stability of which are proved in spaces of weighted continuous functions. Error estimates and numerical tests are also included.  相似文献   

6.
This paper investigates a numerical method for solving two-dimensional nonlinear Fredholm integral equations of the second kind on non-rectangular domains. The scheme utilizes the shape functions of the moving least squares (MLS) approximation constructed on scattered points as a basis in the discrete collocation method. The MLS methodology is an effective technique for approximating unknown functions which involves a locally weighted least square polynomial fitting. The proposed method is meshless, since it does not need any background mesh or cell structures and so it is independent of the geometry of the domain. The scheme reduces the solution of two-dimensional nonlinear integral equations to the solution of nonlinear systems of algebraic equations. The error analysis of the proposed method is provided. The efficiency and accuracy of the new technique are illustrated by several numerical examples.  相似文献   

7.
In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre-Gauss-Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.  相似文献   

8.
From decomposition method for operators, we consider a Newton-Steffensen iterative scheme for approximating a solution of nonlinear Fredholm integral equations with non-differentiable Nemystkii operator. By means of a convergence study of the iterative scheme applied to this type of nonlinear Fredholm integral equations, we obtain domains of existence and uniqueness of solution for these equations. In addition, we illustrate this study with a numerical experiment.  相似文献   

9.
In this paper we shall investigate the numerical solution of two-dimensional Fredholm integral equations by Nyström and collocation methods based on the zeros of Jacobi orthogonal polynomials. The convergence, stability and well conditioning of the method are proved in suitable weighted spaces of functions. Some numerical examples illustrate the efficiency of the methods.  相似文献   

10.
第一类弱奇异核Fredholm积分方程由于奇异及本质的不适定性,给求解带来很大难度.本文首先利用克雷斯变换将方程转化,并对转化后的方程进行高斯一勒让德离散,得到一离散不适定的线性方程组,结合正则化方法对该类问题进行数值求解.最后给出了数值模拟,验证了本文方法的可行性及有效性.  相似文献   

11.
Generalized alternating polynomials have been introduced by the author earlier. In the present paper their indirect analogue is constructed for numerical solution of the Fredholm linear integral equations. Although the proposed method is a particular case of the general projection scheme, its valuable feature is the presence of a sequence of parameters, which, for sufficiently smooth kernels and inhomogeneous terms, serves as an indicator of the quality of approximation.  相似文献   

12.
This paper is concerned with obtaining approximate numerical solutions of some classes of integral equations by using Bernstein polynomials as basis. The integral equations considered are Fredholm integral equations of second kind, a simple hypersingular integral equation and a hypersingular integral equation of second kind. The method is explained with illustrative examples. Also, the convergence of the method is established rigorously for each class of integral equations considered here.  相似文献   

13.
We study the paper of Avazzadeh et al. [Z. Avazzadeh, M. Heydari, G.B., Loghmani, Numerical solution of Fedholm integral equations of the second kind by using integral mean value theorem, Appl. Math. Model. 35 (2011) 2374–2383] with the integral mean value method for Fredholm integral equations of the second kind. The objective of the note is threefold. First, we point out a basic error in the paper. Second, we find that the given numerical examples are only related to the special cases of Fredholm integral equations of the second kind with the degenerate kernels, which can be solved simply. Third, due to the basic error, our observations reveal that generally the suggested method should not be considered for a Fredholm integral equation of the second kind.  相似文献   

14.
In this work, we adapt and compare implicity linear collocation method and iterated implicity linear collocation method for solving nonlinear two dimensional Fredholm integral equations of Hammerstein type using IMQ-RBFs on a non-rectangular domain. IMQs show to be the most promising RBFs for this kind of equations. The proposed methods are mesh-free and they are independent of the geometry of domain. Convergence analysis of the proposed methods together with some benchmark examples is provided which support their reliability and numerical stability.  相似文献   

15.
In this paper, we comment on the recent papers by Yuhe Ren et al. (1999) [1] and Maleknejad et al. (2006) [7] concerning the use of the Taylor series to approximate a solution of the Fredholm integral equation of the second kind as well as a solution of a system of Fredholm equations. The technique presented in Yuhe Ren et al. (1999) [1] takes advantage of a rapidly decaying convolution kernel k(|st|) as |st| increases. However, it does not apply to equations having other types of kernels. We present in this paper a more general Taylor expansion method which can be applied to approximate a solution of the Fredholm equation having a smooth kernel. Also, it is shown that when the new method is applied to the Fredholm equation with a rapidly decaying kernel, it provides more accurate results than the method in Yuhe Ren et al. (1999) [1]. We also discuss an application of the new Taylor-series method to a system of Fredholm integral equations of the second kind.  相似文献   

16.
In this paper we propose a new method for solving the 2D Laplace equation with Dirichlet boundary conditions in simply and doubly connected domains. Here, we apply the numerical algorithm based on truncated Fourier series and reduce the corresponding Fredholm integral equation to a finite system of linear equations.  相似文献   

17.
A highly accurate new solver is developed to deal with the Dirichlet problems for the 2D Laplace equation in the doubly connected domains. We introduce two circular artificial boundaries determined uniquely by the physical problem domain, and derive a Dirichlet to Dirichlet mapping on these two circles, which are exact boundary conditions described by the first kind Fredholm integral equations. As a direct result, we obtain a modified Trefftz method equipped with two characteristic length factors, ensuring that the new solver is stable because the condition number can be greatly reduced. Then, the collocation method is used to derive a linear equations system to determine the unknown coefficients. The new method possesses several advantages: mesh‐free, singularity‐free, non‐illposedness, semi‐analyticity of solution, efficiency, accuracy, and stability. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

18.
This paper presents an efficient numerical method for finding solutions of the nonlinear Fredholm integral equations system of second kind based on Bernstein polynomials basis. The numerical results obtained by the present method have been compared with those obtained by B‐spline wavelet method. This proposed method reduces the system of integral equations to a system of algebraic equations that can be solved easily any of the usual numerical methods. Numerical examples are presented to illustrate the accuracy of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A Dirichlet problem is considered in a three-dimensional domain filled with a piecewise homogeneous medium. The uniqueness of its solution is proved. A system of Fredholm boundary integral equations of the second kind is constructed using the method of surface potentials, and a system of boundary integral equations of the first kind is derived directly from Green’s identity. A technique for the numerical solution of integral equations is proposed, and results of numerical experiments are presented.  相似文献   

20.
In this work, we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels. Particularly, we consider the case when the underlying solutions are sufficiently smooth. In this case, the proposed method leads to a fully discrete linear system. We show that the fully discrete integral operator is stable in both infinite and weighted square norms. Furthermore, we establish that the approximate solution arrives at an optimal convergence order under the two norms. Finally, we give some numerical examples, which confirm the theoretical prediction of the exponential rate of convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号