首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
Lotfi et al. [Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution, Appl. Math. Modell. 33 (2009) 3151–3156] pointed out that there is no method in literature for finding the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems and proposed a new method to find the fuzzy optimal solution of FFLP problems with equality constraints. In this paper, a new method is proposed to find the fuzzy optimal solution of same type of fuzzy linear programming problems. It is easy to apply the proposed method compare to the existing method for solving the FFLP problems with equality constraints occurring in real life situations. To illustrate the proposed method numerical examples are solved and the obtained results are discussed.  相似文献   

2.
In a recent paper, Ganesan and Veermani [K. Ganesan, P. Veeramani, Fuzzy linear programs with trapezoidal fuzzy numbers, Ann. Oper. Res. 143 (2006) 305–315] considered a kind of linear programming involving symmetric trapezoidal fuzzy numbers without converting them to the crisp linear programming problems and then proved fuzzy analogues of some important theorems of linear programming that lead to a new method for solving fuzzy linear programming (FLP) problems. In this paper, we obtain some another new results for FLP problems. In fact, we show that if an FLP problem has a fuzzy feasible solution, it also has a fuzzy basic feasible solution and if an FLP problem has an optimal fuzzy solution, it has an optimal fuzzy basic solution too. We also prove that in the absence of degeneracy, the method proposed by Ganesan and Veermani stops in a finite number of iterations. Then, we propose a revised kind of their method that is more efficient and robust in practice. Finally, we give a new method to obtain an initial fuzzy basic feasible solution for solving FLP problems.  相似文献   

3.
In the article, Veeramani and Sumathi [10] presented an interesting algorithm to solve a fully fuzzy linear fractional programming (FFLFP) problem with all parameters as well as decision variables as triangular fuzzy numbers. They transformed the FFLFP problem under consideration into a bi-objective linear programming (LP) problem, which is then converted into two crisp LP problems. In this paper, we show that they have used an inappropriate property for obtaining non-negative fuzzy optimal solution of the same problem which may lead to the erroneous results. Using a numerical example, we show that the optimal fuzzy solution derived from the existing model may not be non-negative. To overcome this shortcoming, a new constraint is added to the existing fuzzy model that ensures the fuzzy optimal solution of the same problem is a non-negative fuzzy number. Finally, the modified solution approach is extended for solving FFLFP problems with trapezoidal fuzzy parameters and illustrated with the help of a numerical example.  相似文献   

4.
Demand and supply pattern for most products varies during their life cycle in the markets. In this paper, the author presents a transportation problem with non-linear constraints in which supply and demand are symmetric trapezoidal fuzzy value. In order to reflect a more realistic pattern, the unit of transportation cost is assumed to be stochastic. Then, the non-linear constraints are linearized by adding auxiliary constraints. Finally, the optimal solution of the problem is found by solving the linear programming problem with fuzzy and crisp constraints and by applying fuzzy programming technique. A new method proposed to solve this problem, and is illustrated through numerical examples. Multi-objective goal programming methodology is applied to solve this problem. The results of this research were developed and used as one of the Decision Support System models in the Logistics Department of Kayson Co.  相似文献   

5.
In this paper, we first extend the dual simplex method to a type of fuzzy linear programming problem involving symmetric trapezoidal fuzzy numbers. The results obtained lead to a solution for fuzzy linear programming problems that does not require their conversion into crisp linear programming problems. We then study the ranges of values we can achieve so that when changes to the data of the problem are introduced, the fuzzy optimal solution remains invariant. Finally, we obtain the optimal value function with fuzzy coefficients in each case, and the results are described by means of numerical examples.  相似文献   

6.
Recently, linear programming problems with symmetric fuzzy numbers (LPSFN) have considered by some authors and have proposed a new method for solving these problems without converting to the classical linear programming problem, where the cost coefficients are symmetric fuzzy numbers (see in [4]). Here we extend their results and first prove the optimality theorem and then define the dual problem of LPSFN problem. Furthermore, we give some duality results as a natural extensions of duality results for linear programming problems with crisp data.  相似文献   

7.
This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.  相似文献   

8.
This paper develops a simple approach to critical path analysis in a project network with activity times being fuzzy numbers. The idea is based on the linear programming (LP) formulation and fuzzy number ranking method. The fuzzy critical path problem is formulated as an LP model with fuzzy coefficients of the objective function, and then on the basis of properties of linearity and additivity, the Yager’s ranking method is adopted to transform the fuzzy LP formulation to the crisp one which can be solved by using the conventional streamlined solution methods. Consequently, the critical path and total duration time can be obtained from the derived optimal solution. Moreover, in this paper we also define the most critical path and the relative path degree of criticality, which are theoretically sound and easy to use in practice. An example discussed in some previous studies illustrates that the proposed approach is able to find the most critical path, which is proved to be the same as that derived from an exhausted comparison of all possible paths. The proposed approach is very simple to apply, and it is not require knowing the explicit form of the membership functions of the fuzzy activity times.  相似文献   

9.
To the best of our knowledge, till now there is no method described in literature to find exact fuzzy optimal solution of balanced as well as unbalanced fully fuzzy multi-objective transportation problems. In this paper, a new method named as Mehar??s method, is proposed to find the exact fuzzy optimal solution of fully fuzzy multi-objective transportation problems (FFMOTP). The advantages of the Mehar??s method over existing methods are also discussed. To show the advantages of the proposed method over existing methods, some FFMOTP, which cannot be solved by using any of the existing methods, are solved by using the proposed method and the results obtained are discussed. To illustrate the applicability of the Mehar??s method, a real life problem is solved.  相似文献   

10.
The objective of this paper is to deal with a kind of fuzzy linear programming problem involving triangular fuzzy numbers. Then some interesting and fundamental results are achieved which in turn lead to a solution of fuzzy linear programming models without converting the problems to the crisp linear programming models. Finally, the theoretical results are also supported by a real case study in a banking system. The same idea is emphasized to be also useful when a general LR fuzzy numbers is given.  相似文献   

11.
In this paper, by considering the experts' vague or fuzzy understanding of the nature of the parameters in the problem formulation process, multiobjective linear fractional programming problems with block angular structure involving fuzzy numbers are formulated. Using the a-level sets of fuzzy numbers, the corresponding nonfuzzy a-multiobjective linear fractional programming problem is introduced. The fuzzy goals of the decision maker for the objective functions are quantified by eliciting the corresponding membership functions including nonlinear ones. Through the introduction of extended Pareto optimality concepts, if the decision maker specifies the degree a and the reference membership values, the corresponding extended Pareto optimal solution can be obtained by solving the minimax problems for which the Dantzig-Wolfe decomposition method and Ritter's partitioning procedure are applicable. Then a linear programming-based interactive fuzzy satisficing method with decomposition procedures for deriving a satisficing solution for the decision maker efficiently from an extended Pareto optimal solution set is presented. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

12.
Fuzzy linear programs with trapezoidal fuzzy numbers   总被引:1,自引:0,他引:1  
The objective of this paper is to deal with a kind of fuzzy linear programming problem involving symmetric trapezoidal fuzzy numbers. Some important and interesting results are obtained which in turn lead to a solution of fuzzy linear programming problems without converting them to crisp linear programming problems.  相似文献   

13.
A solution concept for fuzzy multiobjective programming problems based on ordering cones (convex cones) is proposed in this paper. The notions of ordering cones and partial orderings on a vector space are essentially equivalent. Therefore, the optimality notions in a real vector space can be elicited naturally by invoking a concept similar to that of the Pareto-optimal solution in vector optimization problems. We introduce a corresponding multiobjective programming problem and a weighting problem of the original fuzzy multiobjective programming problem using linear functionals so that the optimal solution of its corresponding weighting problem is also the Pareto-optimal solution of the original fuzzy multiobjective programming problem.  相似文献   

14.
To find the fuzzy optimal solution of fuzzy transportation problems it is assumed that the direct route between a source and a destination is a minimum-cost route. However, in actual application, the minimum-cost route is not known a priori. In fact, the minimum-cost route from one source to another destination may well pass through another source first. In this paper, a new method is proposed to find the fuzzy optimal solution of fuzzy transportation problems with the following transshipment: (1) From a source to any another source, (2) from a destination to another destination, and (3) from a destination to any source. In the proposed method all the parameters are represented by trapezoidal fuzzy numbers. To illustrate the proposed method a fuzzy transportation problem with transshipment is solved. The proposed method is easy to understand and to apply for finding the fuzzy optimal solution of fuzzy transportation problems with transshipment occurring in real life situations.  相似文献   

15.
The aim of this paper is to deal with a multiobjective linear programming problem with fuzzy random coefficients. Some crisp equivalent models are presented and a traditional algorithm based on an interactive fuzzy satisfying method is proposed to obtain the decision maker’s satisfying solution. In addition, the technique of fuzzy random simulation is adopted to handle general fuzzy random objective functions and fuzzy random constraints which are usually hard to be converted into their crisp equivalents. Furthermore, combined with the techniques of fuzzy random simulation, a genetic algorithm using the compromise approach is designed for solving a fuzzy random multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

16.
There are several methods in the literature for solving transportation problems by representing the parameters as normal fuzzy numbers. Chiang [J. Chiang, The optimal solution of the transportation problem with fuzzy demand and fuzzy product, J. Inform. Sci. Eng. 21 (2005) 439-451] pointed out that it is better to represent the parameters as (λρ) interval-valued fuzzy numbers instead of normal fuzzy numbers and proposed a method to find the optimal solution of single objective transportation problems by representing the availability and demand as (λρ) interval-valued fuzzy numbers. In this paper, the shortcomings of the existing method are pointed out and to overcome these shortcomings, a new method is proposed to find solution of a linear multi-objective transportation problem by representing all the parameters as (λρ) interval-valued fuzzy numbers. To illustrate the proposed method a numerical example is solved. The advantages of the proposed method over existing method are also discussed.  相似文献   

17.
Mukherjee and Basu proposed a new method for solving fuzzy assignment problems. In this paper, some fuzzy assignment problems and fuzzy travelling salesman problems are chosen which cannot be solved by using the fore-mentioned method. Two new methods are proposed for solving such type of fuzzy assignment problems and fuzzy travelling salesman problems. The fuzzy assignment problems and fuzzy travelling salesman problems which can be solved by using the existing method, can also be solved by using the proposed methods. But, there exist certain fuzzy assignment problems and fuzzy travelling salesman problems which can be solved only by using the proposed methods. To illustrate the proposed methods, a fuzzy assignment problem and a fuzzy travelling salesman problem is solved. The proposed methods are easy to understand and apply to find optimal solution of fuzzy assignment problems and fuzzy travelling salesman problems occurring in real life situations.  相似文献   

18.
In multi-objective geometric programming problem there are more than one objective functions. There is no single optimal solution which simultaneously optimizes all the objective functions. Under these conditions the decision makers always search for the most “preferred” solution, in contrast to the optimal solution. A few mathematical programming methods namely fuzzy programming, goal programming and weighting methods have been applied in the recent past to find the compromise solution. In this paper ??-constraint method has been applied to find the non-inferior solution. A brief solution procedure of ??-constraint method has been presented to find the non-inferior solution of the multi-objective programming problems. Further, the multi-objective programming problems is solved by the fuzzy programming technique to find the optimal compromise solution. Finally, two numerical examples are solved by both the methods and compared with their obtained solutions.  相似文献   

19.
In this paper, a well-known network-structured problem called the transportation problem (TP) is considered in an uncertain environment. The transportation costs, supply and demand are represented by trapezoidal intuitionistic fuzzy numbers (TrIFNs) which are the more generalized form of trapezoidal fuzzy numbers involving a degree of acceptance and a degree of rejection. We formulate the intuitionistic fuzzy TP (IFTP) and propose a solution approach to solve the problem. The IFTP is converted into a deterministic linear programming (LP) problem, which is solved using standard LP algorithms. The main contributions of this paper are fivefold: (1) we convert the formulated IFTP into a deterministic classical LP problem based on ordering of TrIFNs using accuracy function; (2) in contrast to most existing approaches, which provide a crisp solution, we propose a new approach that provides an intuitionistic fuzzy optimal solution; (3) in contrast to existing methods that include negative parts in the obtained intuitionistic fuzzy optimal solution and intuitionistic fuzzy optimal cost, we propose a new method that provides non-negative intuitionistic fuzzy optimal solution and optimal cost; (4) we discuss about the advantages of the proposed method over the existing methods for solving IFTPs; (5) we demonstrate the feasibility and richness of the obtained solutions in the context of two application examples.  相似文献   

20.
Fuzzy mathematical programming problems (FMP) form a subclass of decision - making problems where preferences between alternatives are described by means of objective function(s) defined on the set of alternatives. The formulation a FMP problem associated with the classical MP problem is presented. Then the concept of a feasible solution and optimal solution of FMP problem are defined. These concepts are based on generalized equality and inequality fuzzy relations. Among others we show that the class of all MP problems with (crisp) parameters can be naturally embedded into the class of FMP problems with fuzzy parameters. We also show that the feasible and optimal solutions being fuzzy sets are convex under some mild assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号