首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Cadmium ions trapped in a linear Paul trap have been laser cooled by use of a microwave transition as a repumping process. A 15.2-GHz microwave transition between a ground-state hyperfine splitting is used for repumping, while an all-solid-state laser with the wavelength of 214 nm drives the cooling transition between the 2 S 1/2 and 2 P 3/2 states. A phase transition from the cloud state to the crystal state of trapped ions has been observed both in fluorescence spectra and in images of an ion string. Cadmium ions have potential of application for quantum information processing where the ground-state microwave transition is used for both a repumping process and manipulation of quantum states of trapped ions. PACS 32.80.Pj  相似文献   

2.
We present a single solid-state laser system to cool, coherently manipulate and detect 25Mg+ ions. Coherent manipulation is accomplished by coupling two hyperfine ground state levels using a pair of far-detuned Raman laser beams. Resonant light for Doppler cooling and detection is derived from the same laser source by means of an electro-optic modulator, generating a sideband which is resonant with the atomic transition. We demonstrate ground-state cooling of one of the vibrational modes of the ion in the trap using resolved-sideband cooling. The cooling performance is studied and discussed by observing the temporal evolution of Raman-stimulated sideband transitions. The setup is a major simplification over existing state-of-the-art systems, typically involving up to three separate laser sources.  相似文献   

3.
High-resolution laser spectroscopy measurements of optical hyperfine splitting on the 151, 152, 153Eu isotopes were performed on the atomic transition 4f 76s 2 8 S 7/2 → 4f 76s6p 6 P 5/2 at λ ≈ 564.58 nm. Values of the nuclear magnetic dipole and electric quadrupole moments are obtained from the measured hyperfine splitting and the magnetic hyperfine anomalies in the isotope pairs 151, 152Eu and 152, 153Eu are deduced. The absolute values of the hyperfine anomaly in both cases are unusually large: 5 (1)%. The possible sources causing these anomalies are discussed.  相似文献   

4.
The 6s2S1/2-7p 2P3/2 transition in138–142Cs (λ=455.5 nm) has been investigated by high-resolution collinear laser spectroscopy in a fast atomic beam. The isotopes are obtained by on-line mass separation of fission products. Nuclear moments and changes of mean-square charge radii are derived from hyperfine structure and isotope shift.  相似文献   

5.
Isotope shifts and hyperfine splittings in optical transitions for atomic ions of the thorium isotopes227Th to230Th and232Th have been measured by laser spectroscopy on stored ions. From the isotope shift data, changes of the mean square charge radii are determined. A continuous increase of the charge radius with mass numberA is observed, in agreement with droplet model calculations. The results indicate that the odd-even staggering for Th is different from that one of the neighbouring isotones of Fr and Ra. There is some empirical evidence from systematics for an inversion of the staggering and the appearance of an octupole deformation atN ≦137. The hyperfine splitting for229Th for 3 electronic levels is given.  相似文献   

6.
The paper reports on radio-frequency laser double-resonance experiments on171Yb ions confined in a cylindrically symmetric electrodynamic trap in the presence of helium buffer gas. The optical-excitation scheme relies on the selective excitation of a cycling hyperfine component of the = 370 nm resonance transition. Additional excitation of a transition at = 935 nm prevents population trapping of ions in the metastable2 F 7/2 level. Using a maser reference, the ground-state hyperfine resonance frequency is measured under conditions of a systematic variation of confinement conditions. Kinetic temperatures and the resulting relativistic resonance shifts are inferred from the inhomogeneous broadening of the optical resonance transition. Shifts of the hyperfine resonance frequency due to quadratic Stark effect and collisions are determined. By extrapolation, the unperturbed transition frequency is determined as 12 642 812 118.471 (9) Hz.  相似文献   

7.
We have produced laser-cooled Wigner crystals of 229Th3+ in a linear Paul trap. The magnetic dipole (A) and electric quadrupole (B) hyperfine constants for four low-lying electronic levels and the relative isotope shifts with respect to 232Th3+ for three low-lying optical transitions are measured. Using the hyperfine B constants in conjunction with prior atomic structure calculations, a new value of the spectroscopic nuclear electric quadrupole moment Q=3.11(16) eb is deduced. These results are a step towards optical excitation of the low-lying isomer level in the 229Th nucleus.  相似文献   

8.
We describe a frequency-stabilized diode laser at 698 nm used for high-resolution spectroscopy of the 1S03P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high-finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high-resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase noise-compensated 200-m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7×10−18 after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 1014. Furthermore, with an eye toward the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.  相似文献   

9.
Backe  H.  Baum  R. -R.  Fricke  B.  Habs  D.  Hellmann  K.  Hies  M.  Illgner  Ch.  Krameyer  Ch.  Kunz  H.  Lauth  W.  Martin  R.  Schwamb  P.  Theobald  W.  Thörle  P.  Trautmann  N. 《Hyperfine Interactions》1996,97(1):535-541
Istope shift and hyperfine structure measurements have been performed for the242fAm fission isomer with target production rates of only a few per second. The method is based on resonance ionization spectroscopy (RIS) in a buffer gas cell with radioactive decay detection of the ionization process (RADRIS). A relative isotope shift ratioX exp=IS242f,241/ IS243,241=41.7±0.9 has been measured for the 500.02 nm transition corresponding to a nuclear parameter 242f,241=5.4±0.3 fm2. The analysis of the quadrupole moment based on the deformed Fermi-model of the nuclear charge distribution including second order corrections results inQ 20=38.2 ±1.4( –0.8 +0.4 )model eb. The measurement of the hyperfine structure splitting of the transition at 466.28 nm yields a negativeg-factor and a nuclear spin ofI=2 orI=3.Work supported by the Bundesministerium für Bildung und Forschung under contract 06 MZ 5661.  相似文献   

10.
A. M. Frolov 《JETP Letters》2016,103(12):739-742
The hyperfine structure of the ground 22S-states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus, we determine the hyperfine structure of the ground (doublet) 22S-state(s) in the 6Li and 7Li atoms. Our predicted values (228.2058 and 803.5581 MHz, respectively) agree well with the experimental values 228.20528(8) MHz (6Li) and 803.50404(48) MHz (7Li [R.G. Schlecht and D.W. McColm, Phys. Rev. 142, 11 (1966)]). The hyperfine structures of a number of lithium isotopes with short lifetimes, including 8Li, 9Li, and 11Li atoms are also predicted. The same method is used to obtain the hyperfine structures of the three-electron 7Be+ and 9Be+ ions in their ground 22S-states. Finally, we conclude that our approach can be generalized to describe the hyperfine structure in the triplet n3S-states of the four-electron atoms and ions.  相似文献   

11.
Resonance ionization spectroscopy (RIS) inside a buffer gas-filled ion guide is a very sensitive tool for a first determination of nuclear moments and charge radii of radioactive isotopes produced using the IGISOL technique. Currently employed pulsed Ti:sapphire laser systems have a typical laser linewidth of 5 GHz in the fundamental, which in many cases is the dominant line broadening effect. We present results of RIS on stable 63,65Cu using a dual-etalon Ti:sapphire laser with a reduced linewidth of 1 GHz. Determination of hyperfine parameters of 63Cu revealed discrepancies when compared to existing higher resolution data. A study of systematic uncertainties is underway using a homemade scanning Fabry-Pérot interferometer (FPI). A real-time recording of the mode structure of the multi-longitudinal mode Ti:sapphire laser during a scan of the 244.238 nm atomic ground state transition in parallel with the readout from the commercial wavemeter has identified sources of uncertainty.  相似文献   

12.
First laser spectroscopic measurements of the 6s5d3D1-6s6p1P1 and 6s5d3D2-6s6p1P1 transitions in several isotopes of atomic barium have been performed. The hyperfine structure of these transitions was optically resolved and isotope shifts for even and odd isotopes were determined. The isotope shifts show a deviation from their expected behavior for odd isotopes in an analysis based on King-plots. This observation puts atomic structure calculations at test because available theories do not predict this. A profound understanding of the wavefunctions for heavy alkaline earth systems like barium (Ba) and radium (Ra) is essential for a theoretical evaluation of their sensitivity to fundamental symmetry breaking effects such as they could be observed, e.g., through permanent electric dipole moments. Further the absolute frequency of the 6s2 1S0-6s6p3P1 intercombination line in 138Ba was determined to be 12 636.6232(1) cm-1.  相似文献   

13.
We have studied possible candidates for laser cooling transitions in 169Tm in the spectral region of 410–420 nm. By means of saturation absorption spectroscopy, we have measured the hyperfine structure and rates of two nearly closed cycling transitions from the ground state 4f136s2(2F0)(Jg=7/2) to upper states 4f12(3H5)5d3/26s2(Je=9/2) at 410.6 nm and 4f12(3F4)5d5/26s2(Je=9/2) at 420.4 nm and evaluated the life times of the excited levels as 15.9(8) ns and 48(6) ns, respectively. Decay rates from these levels to neighboring opposite-parity levels are evaluated by means of Hartree–Fock calculations. We conclude that the strong transition at 410.6 nm has an optical leak rate of less then 2×10-5 and can be used for efficient laser cooling of 169Tm from a thermal atomic beam. The hyperfine structure of two other even-parity levels, which can be excited from the ground state at 409.5 nm and 418.9 nm, is also measured by the same technique. In addition, we give a calculated value of 7(2) s-1 for the rate of magnetic-dipole transition at 1.14 μm between the fine structure levels (Jg=7/2)↔(J’g=5/2) of the ground state which can be considered as a candidate for applications in atomic clocks. PACS 32.70.Cs; 32.10.Fn; 32.80.Pj  相似文献   

14.
The hyperfine structure parameters of the 1s22snp (n=2, 3) 3P states for the beryllium isoelectronic sequence from Z= 4 to 10 are calculated with the full-core plus correlation (FCPC) wave functions. For the 1s22s2p 3P state of the beryllium atom, the calculated fine structure parameters are in good agreement with the latest theoretical and experimental data in the literature. It is shown that hyperfine constants of the low-lying excited states for the beryllium atom can be calculated accurately using this theoretical method. For 1s22snp (n=2, 3) 3P states of the beryllium isoelectronic sequence, our predictions may provide valuable reference data for other theoretical calculations and experimental measurements in future.  相似文献   

15.
The beta-decay of 232Fr to excited states in 232Ra has been studied using gamma-gamma coincidence detection combined with the isotope separator on-line technique at the ISOLDE PSB facility at CERN. Earlier findings are confirmed and three new gamma lines are reported. In addition to the beta-decay characteristics of 232Fr, the K = 0 ground-state band in 232Ra is identified. A yield survey of neutron-rich Fr isotopes, important also for the EURISOL project, is incorporated.Received: 20 April 2004, Revised: 12 May 2004, Published online: 13 July 2004PACS: 21.10.-k Properties of nuclei; nuclear energy levels - 23.20.-g Electromagnetic transitions - 28.60. + s Isotope separation and enrichment - 29.25.Rm Sources of radioactive nuclei  相似文献   

16.
The hyperfine structure, isotope and isomeric shifts in the atomic transition 6p 2 P 3/2–7s 2 S 1/2, =535 nm have been measured for theI=7 andI=2 states of190, 192, 194, 196Tl; theI=1/2 andI=9/2 states of191Tl and the I=7 isomer of188Tl. The thallium isotopes were prepared as fast atomic beams at the GSI on-line mass separator following fusion reactions and — in some cases — subsequent-decay. The nuclear dipole moments, electric quadrupole moments and the change in the nuclear mean square charge radius are evaluated. Theuu-isotopes show an isomeric shift which changes sign between192Tl and194Tl.Dedicated to P. Armbruster on the occasion of his 60th birthday  相似文献   

17.
An extremely thin cell (ETC) with the thickness of a Rb atomic vapor layer in the range of 100–300 nm was fabricated. It is demonstrated that a simple laser-diode technique with a single resonant light beam is sufficient to observe separately all of the atomic hyperfine transitions of the D 2 line of Rb (780 nm) and also allows us to measure the relative transition probabilities of the hyperfine transitions. The onset of collisional self-broadening of the hyperfine transitions as the number density of atoms increases was studied. The detrimental role of the atoms with slow longitudinal velocity in the sub-Doppler response of the Rb ETC is demonstrated by studies in which the cell is tilted from normal incidence of the laser beam. It is also shown that using an ETC allows us to resolve in a moderate external magnetic field the Zeeman splitting of the hyperfine transitions of the 87Rb D 1 transition F g=1F e=1,2. Received: 19 February 2003 / Revised version: 4 April 2003 / Published online: 2 June 2003 RID="*" ID="*"Corresponding author. Fax: +374/32-31172, E-mail: david@ipr.sci.am  相似文献   

18.
We report a diode-pumped Pr3+:YAlO3 laser emitting at 747 nm. A power of 232 mW at 747 nm has been achieved in continuous-wave operation with a diode emitting 2 W at 448 nm. Furthermore, intracavity second-harmonic generation in continuous-wave mode has also been demonstrated with a power of 52 mW at 374 nm by using a LBO nonlinear crystal. The fluctuation of the violet output power was better than 2.3%. The beam quality M 2 value is 2.2.  相似文献   

19.
It has been experimentally demonstrated that the use of the effect of significant narrowing of the fluorescence spectrum from a nanocell that contains a column of atomic Rb vapor with a thickness of L = 0.5λ (where λ = 794 nm is the wavelength of laser radiation, whose frequency is resonant with the atomic transition of the D 1 line of Rb) and the application of narrowband diode lasers allow the spectral separation and investigation of changes in probabilities of optical atomic transitions between levels of the hyperfine structure of the D 1 line of 87Rb and 85Rb atoms in external magnetic fields of 10–2500 Gs (for example, for one of transitions, the probability increases ∼17 times). Small column thicknesses (∼390 nm) allow the application of permanent magnets, which facilitates significantly the creation of strong magnetic fields. Experimental results are in a good agreement with the theoretical values. The advantages of this method over other existing methods are noted. The results obtained show that a magnetometer with a local spatial resolution of ∼390 nm can be created based on a nanocell with the column thickness L = 0.5λ. This result is important for mapping strongly inhomogeneous magnetic fields.  相似文献   

20.
CdWO4 crystals grown by the Czochralski method at the low-temperature gradient were investigated with electron spin resonance (ESR) spectroscopy. ESR spectra did not contain the spectra of impurity ions typical for the CdWO4 structure, i.e., Fe3+, Mn2+, and Cr3+. At the same time, in the studied crystals a complex ESR spectrum having the hyperfine structure due to two nonequivalent tungsten atoms was observed (W183;I=1/2; natural abundance, 14.28%). Angular dependence analysis and simulation of ESR spectra have shown that this novel spectrum is described by a spin-Hamiltonian with the following parameters:D=839 G,E=80 G,g xx=2.01,g yy=1.97,g zz=1.987 and electron spinS=7/2. There is one magnetically nonequivalent position of the center in the crystal structure and the direction ofD zz andg zz corresponds to the direction of Wn-Wn+2 (or Cdn-Cdn+2) in the crystal structure. Because of the fact that it is in principle impossible to achieve the electron stateS=7/2 for the d-shell of one transition metal ion and taking into account the fact that such electron state is realized for two nonequivalent tungsten atoms, we suppose the defect structure to be the chain W2+-M+-W3+. In the structure of this defect the ion M+ is diamagnetic, the ions W2+ and W3+ have electron spinS=2 andS=3/2, respectively. The necessary condition for such defect to exist is to place this chain of ions in cadmium positions for the charge compensation. the reason for such defects to form is supposed to be the incorporation of M+ ions into the CdWO4 lattice. The presence of W2+ and W3+ in Cd positions in the defect structure provides the charge compensation and the lowering of the lattice stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号