首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Detailed studies on hydrogen evolution by decamethylruthenocene ([Cp*2RuII]) highlighted that metallocenes are capable of photoreducing hydrogen without the need for an additional sensitizer. Electrochemical, gas chromatographic, and spectroscopic (UV/Vis, 1H and 13C NMR) measurements corroborated by DFT calculations indicated that the production of hydrogen occurs by a two-step process. First, decamethylruthenocene hydride [Cp*2RuIV(H)]+ is formed in the presence of an organic acid. Subsequently, [Cp*2RuIV(H)]+ is reversibly reduced in a heterolytic reaction with one-photon excitation leading to a first release of hydrogen. Thereafter, the resultant decamethylruthenocenium ion [Cp*2RuIII]+ is further reduced with a second release of hydrogen by deprotonation of a methyl group of [Cp*2RuIII]+. Experimental and computational data show spontaneous conversion of [Cp*2RuII] to [Cp*2RuIV(H)]+ in the presence of protons. Calculations highlight that the first reduction is endergonic (ΔG0=108 kJ mol−1) and needs an input of energy by light for the reaction to occur. The hydricity of the methyl protons of [Cp*2RuII] was also considered.  相似文献   

2.
Abstract

New dinuclear asymmetric complexes of ruthenium and rhenium, of formula [(bpy)(CO)3 ReI(4,4′-bpy)RuII/III(NH3)5]3+/4+ have been prepared and characterized by spectroscopic and electrochemical techniques. In the mixed-valent species [ReI, RuIII], the back electron transfer reaction RuII → ReII, that occurs after light excitation, is predicted to be in the Marcus inverted region. This fact is consistent with the observed quenching of the luminiscence of the Re chromophore in [(bpy)(CO)3ReI(4,4′-bpy)RuIII(NH3)5]4+, when compared to the parent complex [(bpy)(CO)3ReI(4,4′-bpy)]+. A theoretical treatment due to Creutz, Newton and Sutin has been successfully applied to predict the electronic coupling element in the mixed-valent complex.  相似文献   

3.
Photocatalytic decomposition of dispiro(diadamantane-1,2-dioxetane) (1) to adamantanone (2) initiated by Ce(ClO4)3 in the excited state in the MeCN−CHCl3 (2∶1) mixture was studied. The bimolecular rate constants of quenchingk q were determined from the kinetics of quenching of Ce3+* by dioxetane at different temperatures. The Arrhenius parameters of the quenching were calculated from the temperature dependence ofk q:E a=3.2±0.3 kcal mol−1 and logA=11.6±6. The quantum yields of photolysis of 1 depending on its concentration and the rate constant of the chemical reaction of Ce3+* with 1 were determined. The latter coincides withk q:k ch=(2.6±0.3)·109 L mol−1 s−1 (T=298 K). The fact that the maximum quantum yield of decomposition of dioxetane is equal to 1 indicates the absence of physical quenching of Ce3+* with 1. Nonradiative deactivation of Ce3+* in solutions of MeCN and in MeCN−CHCl3 mixtures was studied. It is caused by the replacement of H2O molecules in the nearest coordination surroundings of Ce3+ by solvent molecules and reversible transfer of an electron to the ligand. The activation parameters of the nonradiative deactivation of Ce+* were determined. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 724–729, April, 1997.  相似文献   

4.
The interactions of potentially dinucleating bridging functionalities (I–VI) with the ruthenium-bis(bypyridine) precursor [RuII(bpy)2(EtOH)2]2+have been explored. The bridging functionsI,II andVI directly result in the expected dinuclear complexes of the type [(bpy)2RuIILnRuII(bpy)2]z+ (1,2,7 and 8) (n = 0,z =4 andn = -2,z = 2). The bridging ligandIII undergoes N-N or N-C bond cleavage reaction on coordination to the RuII(bpy)2 core which eventually yields a mononuclear complex of the type [(bpy)2RuII(L)]+,3, where L =-OC6H3(R)C(R′)=N-H. However, the electrogenerated mononuclear ruthenium(III) congener, 3+in acetonitrile dimerises to [(bpy)2RuIII {-OC6H3(R)C(R′)=N-N=(R′)C(R)C6H3O-}RuIII(bpy)2]4+ (4). In the presence of a slight amount of water content in the acetonitrile solvent the dimeric species (4) reduces back to the starting ruthenium(II) monomer (3). The preformed bridging ligandIV undergoes multiple transformations on coordination to the Ru(bpy)2 core, such as hydrolysis of the imine groups ofIV followed by intermolecular head-to-tail oxidative coupling of the resultant amino phenol moieties, which in turn results in a new class of dimeric complex of the type [(bpy)2RuII -OC6H4-N=C6H3(=NH)O-RuII(bpy)2]2+ (5). In5, the bridging ligand comprises of twoN,O chelating binding sites each formally in the semiquinone level and there is ap-benzoquinonediimine bridge between the metal centres. In complex6, the preformed bridging ligand, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, H2L (V) undergoes oxidative dehydrogenation to aromatic tetrazine based bridging unit, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine, L. The detailed spectroelectrochemical aspects of the complexes have been studied in order to understand the role of the bridging units towards the intermetallic electronic coupling in the dinuclear complexes.  相似文献   

5.
CuII/RuII and CdII/RuII hybrid complexes [Cu(L1–3)(NC5H4C≡CRu(dppe)2Cl)] (1a-3a) and [Cd(L1-3)(NC5H4C≡CRu(dppe)2Cl)] (1b–3b) have been prepared by reaction of trans-[RuCl(dppe)2(C≡C-py-3)] (1) with copper or cadmium acetate in the presence of Schiff base ligands LH1–3 (where LH = 2-(pyrrole-2-yl-methylidine)aminophenol (LH1), 5-bromo-2-(pyrrole-2-yl-methylidine)aminophenol (LH2) and 5-nitro-2-(pyrrole-2-yl-methylidine)aminophenol (LH3)). The hybrid materials were characterized on the basis of elemental analyses, TEM, IR, UV–visible, 1H NMR, and 31P NMR spectral studies. TEM overview observations revealed well-dispersed spherical nanoparticles of ~60 nm are formed. Quasireversible redox behavior is observed for CuII/RuII complexes corresponding to CuI/CuII and RuII/RuIII couples. All the complexes exhibit blue-green emission as a result of fluorescence from the intraligand (π → π*) emission excited state with good quantum yield. The second-order nonlinear optical (NLO) properties of CuII/RuII and CdII/RuII complexes have been investigated by the Kurtz-powder method. The second harmonic generation efficiency of these complexes show that these complexes are NLO active and display good second-order nonlinear optical activity.  相似文献   

6.
The water-soluble complex [RuClCp(PPh3)(mPTA)](CF3SO3) reacts with the thiopurines, bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2), to lead to the binuclear ruthenium(II) complexes [{RuCp(PPh3)(mPTA)}2-μ-(LS7,S′7)](CF3SO3)2 where (L = MBTT2? (1), EBTT2? (2), and PBTT2? (3)). All the complexes have been fully characterized by elemental analysis, IR, and multinuclear 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. The cyclic voltammetry of the complexes is characterized by two one-electron oxidative responses (RuII–RuII/RuIII–RuII; RuIII–RuII/RuIII–RuIII) that increase their redox potential when the bis(8-thiotheophylline)-alkyl-bridge growths. The reactivity against DNA and partition coefficient of the complexes were also determined.  相似文献   

7.
Two iron(II) complexes, [FeII(pytBuN3)2](FeCl4) (1) and [FeII(pytBuMe2N3)Cl2] (2), with sterically constrained pytBuN3 and pytBuMe2N3 chelate ligands (pytBuN3 = 2,6-bis-(aldiimino)pyridyl; pytBuMe2N3 = 2,6-bis-(ketimino)pyridyl), have been synthesized and characterized by elemental analysis, IR, UV–vis spectra, and preliminary X-ray single-crystal diffraction. The latter revealed that Fe(II) in 1 is six-coordinate by six nitrogen donors from two bisiminopyridines in a distorted octahedron. Complex 2 reacts with thiourea with a second-order rate constant k2 = (2.50 ± 0.05) × 10?3 M?1 s?1 at 296 K, and the reaction seemed to be slow. In a similar way, the interaction of 2 and DNA was studied by fluorescence and absorption spectroscopy. The results revealed that 2 caused fluorescence quenching of DNA through a dynamic quenching procedure. The binding constants KA, Kapp, and KSV as well as the number of binding sites between 2 and DNA were determined.  相似文献   

8.
Polycrystalline (CH3)4NOH·5 H2O (I) and (CH3)4NOD·5D2O (II) have been studied by1H NMR lineshapes, second moments and spin-lattice relaxation times and by2H NMR lineshapes as a function of temperature. From low temperatures the first motion to occur is reorientation of the internally rigid (CH3)4N+ ion about a uniqueC 3 axis (E ta = 8.37 kJ/mol forI,E a = 9.00 kJ/mole forII), followed closely by pseudo isotropic reorientation of the whole ion (E a = 18.10 kJ/mol). Motion of the cage molecules (water and hydroxide ion) occurs at higher temperatures with an apparentE a = 11.30 kJ/mol. There is some evidence of a phase transition inII but notI in the 220–230 K region.2H NMR lineshapes ofII below 220 K indicate static cage molecules. Some of the2H quadrupole coupling constants derived from these spectra correspond to O·O hydrogen-bond distances which are incompatible with the known room temperature structure ofI. Above the possible transition inII the anisotropic2H lineshapes indicate rapid motion of2H among all possible hydrogen-bond sites via transfer along the bonds and molecular reorientation. This motion persists in the high temperature phase but the lineshape becomes isotropic due to the cubic symmetry of this phase. It is possible that1H or2H tunnelling plays an important part in the motion of the cage molecules and the different phase behaviour ofI andII.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

9.
Quenching of the fluorescence of Ad=O and its singlet-exited state (1Ad=O*) generated in chemiluminescent reaction of adamantylideneadamantane-1,2-dioxetane (AdOOAd) termolysis by C60 fullerene was detected and investigated. The “quenching efficiency-C60 concentration” plots obtained from the decrease in the fluorescence and chemiluminescence intensities obey the Stern-Volmer law. The bimolecular rate constants (k bim) were determined and the overlap integrals of the Ad=O fluorescence spectra with the C60 absorption spectra (∫ Ov) were calculated. Based on the nonconstant k bim/∫Ov ratios for different singlet-exited energy donors obtained for the 1PAH*-C60 systems (PAH are polycyclic aromatic hydrocarbons) and 1Ad=O*-C60, a conclusion is drawn that quenching of 1Ad=O* by C60 fullerene is a result of inductive-resonant singlet-singlet (major contribution) and exchange-resonant singlet-triplet (minor contribution) energy transfer. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1044–1046, May, 2007.  相似文献   

10.
A new oxamato-bridged NiIICuIINiII species, [Ni(iprtacn)]2[Cu(pba)(H2O)0.5](BPh4)2 (1), (iprtacn?=?1,4,7-triisopropyl-1,4,7-triazacyclononane; pba?=?1,3-propylenebis(oxamato)) has been synthesized and structurally as well as magnetically characterized. Complex 1 has a discrete trinuclear NiIICuIINiII structure: Two nickel(II) ions are bridged by [Cu(pba)]2? with the macrocyclic ligand iprtacn a terminal ligand of nickel(II). Fitting the magnetic data of 1 led to g Cu?=?2.16, g Ni?=?2.18, J?=??112.5?cm?1, D?=?±7.78?cm?1. The irregular spin state structure and interaction of complex 1with DNA are described here.  相似文献   

11.
Complexation of the chelate both with dioxetane and with adamantanone (2), the product of decomposition of dioxetane, have an important effect on chemiluminescence (CL) in thermal decomposition of adamantylideneadamantane-1,2-dioxetane (1) in the presence of Eu(fod)3 chelate. The stability constants of Eu(fod)3·1 and Eu(fod)3·2 complexes were obtained. It was found that Eu(fod)3 catalyzes and activates chemiluminescent decomposition of1. The rate constant (k2) of decomposition of the Eu(III)·1 complex was determined from the kinetics of quenching of CL, and the activation parameters were determined from the temperature curve. Luminescence from the5D1-level of the Eu(III) ion was detected in the CL spectrum and was correlated with direct (bypassing the triplet of the ligand) transfer of excitation energy from2 t* to the luminescent levels of Eu(III) in the geometrically distorted complex Eu(fod)3·2.Institute of Organic Chemistry, Ural Branch, Russian Academy of Sciences, 450054 Ufa. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 1056–1063, May, 1992.  相似文献   

12.
Thiopurines bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2) were reacted with [RuClCp(mPTA)2](CF3SO3)2 in water to afford the bis-ruthenium complexes [{RuCp(mPTA)2}2-μ-(L-κN7,N′7)](CF3SO3)4 (1: L = MBTT; 2: L = EBTT; 3: L = PBTT), which have been characterized by elemental analysis, IR, and multinuclear NMR (1H, 13C{1H}, 31P{1H} and 19F{1H}) spectroscopy). Diffusion experiments for 1 were carried out. Proposed structures for the three complexes were also supported by theoretical calculations. Cyclic voltammetry showed that these complexes are characterized by two one-electron irreversible oxidative response (RuII – RuII/RuIII – RuII; RuIII – RuII/RuIII – RuIII). Complexes showed poor antiproliferative activity against cisplatin-sensitive T2 human cell line and the cisplatin-resistant SKOV3 cell line.  相似文献   

13.
Abstract

The triply chloro-bridged binuclear complex [Ru2Cl5(CO)(PPh3)3]·CH2Cl2, (PPh3 = triphenylphosphine), Mr = 1279.23, prepared from the precursor compound [RuCl3(PPh3)2DMA]·DMA (DMA = N,N′-dimethylacetamide) and crystallizes in the monoclinic space group P21/c. The structure was solved from 6994 independent reflections for which I > 3σ(I) by Patterson and difference Fourier techniques and refined to a final R = 0.042. The complex is formed by two Ru atoms bridged through three chloride anions. One Ru atom is further coordinated to two non-bridging Cl atoms and a triphenylphosphine ligand, whereas the other is bonded to two PPh3 ligands and a carbon monoxide molecule. The presence of RuIII was confirmed by EPR data. The absence of an intervalence charge-transfer transition (IT) in the near-infrared spectrum suggests that the binuclear complex is of a localized valence type. The IR spectrum shows a νCO band at 1964cm? and νRu-Cl bands at 328, 280 cm?1, corresponding to chlorides at terminal positions and 250, 225 cm?1 for the bridged ones. Two redox processes, RuII/RuII (E1/2 = -0.29 V) ← RuII/RuIII ← (E1/2 = 1.19 V) RuIII/RuIII, were observed by cyclic voltammetry.  相似文献   

14.
Photophysical properties in dilute MeCN solution are reported for seven RuII complexes containing two 2,2′‐bipyridine (bpy) ligands and different third ligands, six of which contain a variety of 4,4′‐carboxamide‐disubstituted 2,2′‐bipyridines, for one complex containing no 2,2′‐bipyridine, but 2 of these different ligands, for three multinuclear RuII complexes containing 2 or 4 [Ru(bpy)2] moieties and also coordinated via 4,4′‐carboxamide‐disubstituted 2,2′‐bipyridine ligands, and for the complex [(Ru(bpy)2(L)]2+ where L is N,N′‐([2,2′‐bipyridine]‐4,4′‐diyl)bis[3‐methoxypropanamide]. Absorption maxima are red‐shifted with respect to [Ru(bpy)3]2+, as are phosphorescence maxima which vary from 622 to 656 nm. The lifetimes of the lowest excited triplet metal‐to‐ligand charge transfer states 3MLCT in de‐aerated MeCN are equal to or longer than for [Ru(bpy)3]2+ and vary considerably, i.e., from 0.86 to 1.71 μs. Rate constants kq for quenching by O2 of the 3MLCT states were measured and found to be well below diffusion‐controlled, ranging from 1.2 to 2.0⋅109 dm3 mol−1 s−1. The efficiencies f of singlet‐oxygen formation during oxygen quenching of these 3MLCT states are relatively high, namely 0.53 – 0.89. The product of kq and f gives the net rate constant k for quenching due to energy transfer to produce singlet oxygen, and kqk equals k, the net rate constant for quenching due to energy dissipation of the excited 3MLCT states without energy transfer. The quenching rate constants were both found to correlate with ΔGCT, the free‐energy change for charge transfer from the excited Ru complex to oxygen, and the relative and absolute values of these rate constants are discussed.  相似文献   

15.
The complex cis‐[RuIII(dmbpy)2Cl2](PF6) ( 2 ) (dmbpy = 4, 4′‐dimethyl‐2, 2′‐bipyridine) was obtained from the reaction of cis‐[RuII(dmbpy)2Cl2] ( 1 ) with ammonium cerium(IV) nitrate followed by precipitation with saturated ammonium hexafluoridophosphate. The 1H NMR spectrum of the RuIII complex confirms the presence of paramagnetic metal atoms, whereas that of the RuII complex displays diamagnetism. The 31P NMR spectrum of the RuIII complex shows one signal for the phosphorus atom of the PF6 ion. The perspective view of each [RuII/III(dmbpy)2Cl2]0/+ unit manifests that the ruthenium atom is in hexacoordinate arrangement with two dmbpy ligands and two chlorido ligands in cis position. As the oxidation state of the central ruthenium metal atom becomes higher, the average Ru–Cl bond length decreases whereas the Ru–N (dmbpy) bond length increases. The cis‐positioned dichloro angle in RuIII is 1.3° wider than that in the RuII. The dihedral angles between pair of planar six‐membered pyridyl ring in the dmbpy ligand for the RuII are 4.7(5)° and 5.7(4)°. The observed inter‐planar angle between two dmbpy ligands in the RuII is 89.08(15)°, whereas the value for the RuIII is 85.46(20)°.  相似文献   

16.
Abstract

The triply halide-bridged binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (AsPh3 = triphenylarsine), [Ru2Cl5(CO)(PPh3)2(AsPh3)] (PPh3 = triphenylphosphine), [Ru2Cl5(CO)(AsPh3)2(PPh3)], [Ru2 Br5(CO)(PPh3)3], [Ru2Cl5(CO)(P{p-tol}3)2(PPh3)] (P{p-tol}3 = tri-p-tolylphosphine) and [Ru2 Br2Cl3(PPh3)2(AsPh3)] were prepared from the precursor compounds ttt-[RuX2(CO)2(P)2] (X = Cl or Br) and [RuY3(P')2S]·S (Y = Cl or Br; P=PPh3, AsPh3 or P{p- tol}3 and P' = AsPh3 or PPh3; S=DMA or MeOH, where DMA = N,N'-dimethylacetamide). The molecular structures of the binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (P21/c), [Ru2Br5(CO)(PPh3)3] (P21/c) and ttt-[RuCl2(CO)2(PPh3)2] (P1) were determined by X-ray diffraction methods. The complexes are always formed by two Ru atoms bridged through three halide anions, two of which are × type (from the RuII precursor) and the other is Y type (from the rutheniumIII precursor) confirming our previously suggested mechanism for obtaining this class of complexes. The RuII atom is also coordinated to a carbon monoxide molecule and two P ligands from the ttt-starting isomer whereas the RuIII atom is bonded to two non-bridging Y halides and one P' molecule. The presence of RuIII was confirmed by EPR data, a technique that was also useful to suggest the symmetry of the complexes. The absence of intervalence charge-transfer transitions (IT) in the near infrared spectrum confirms that the binuclear complexes have localized valence. The IR spectra of the complexes show; (CO) bands close to 1970 cm?1 and ν(Ru-Cl) or(Ru-Br) bands at about 230–380 cm?1 corresponding to halides at terminal or bridged positions. Two widely separated redox processes, RuII/RuII←RuII/RuIII→RuIII/RuIII, were observed by cyclic voltammetry and differential pulse voltammetry.  相似文献   

17.
Abstract

The substitution behavior of the [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2′:6′,2′′-terpyridine, ampy = 2-(aminomethyl)pyridine) complex in water with several bio-relevant ligands such as chloride, thiourea and N,N′-dimethylthiourea, was investigated and compared with the reactivity of the [RuII(terpy)(bipy)Cl]Cl and [RuII(terpy)(en)Cl]Cl (bipy =2,2′-bipyridine and en?=?ethylenediamine) complexes. Earlier results have shown that the reactivity and pKa values of Ru(II) complexes can be tuned by a systematic variation of electronic effects provided by bidentate spectator chelates. The reactivity of both the chlorido and aqua derivatives of the studied Ru(II) complexes increases in the order [RuII(terpy)(bipy)X]+/2+?<?[RuII(terpy)(ampy)X]+/2+?<?[RuII(terpy)(en)X]+/2+. This finding can be accounted for in terms of π back-bonding effects provided by the pyridine ligands. The activation parameters for all the studied reactions support an associative interchange substitution mechanism.  相似文献   

18.
Oxidation of trispicolinatoruthenate(II) complex by hydrogen peroxide leads to the formation of mer-trispicolinatoruthenium(III) in acidic or neutral solutions. Kinetics of the reaction were studied under a large excess of H2O2 at constant pH. The initial rate method gives a rate expression of the form: - d[\textRu(\textII)]/\textdt = kII [\textH2 \textO2 ][\textRu(\textII)] - \hbox{d}[{\text{Ru}}({\text{II}})]/{\text{d}}t = k^{II} [{\text{H}}_{2} {\text{O}}_{2} ][{\text{Ru}}({\text{II}})] but the overall process examined till completion is far more complex. The rate of the reaction decreases with increasing pH to be practically completely retarded in alkaline media. The key step in the proposed reaction mechanism is the picolinato chelate ring opening followed by the substitution of the coordinated water by H2O2 and two-electron intramolecular ruthenium(II) oxidation. Formation of the final ruthenium(III) complex is assigned rather to the ruthenium(IV) reduction by H2O2 than ruthenium(II)–ruthenium(IV) comproportionation. The obtained results show the much slower rate of the trispicolinatoruthenate(II) oxidation by hydrogen peroxide or dioxygen than the mer-trispicolinatoruthenium(III) reduction by such bioreductants as cytochrome cII or some cobalt(II) reductants.  相似文献   

19.

The rate constant for the basic hydrolysis of benzonitrile (PhCN) to benzamide (PhCONH2) in the [RuII(tpy)(bpy)] moiety (tpy = 2,2' : 6',2"-terpyridine, bpy = 2,2'-bipyridine) (kOH = 3.7 2 10-2 M-1s-1) is 5 2 103 times higher than that of the free ligand and two times higher than that corresponding to the analogous acetonitrile complex. This effect is unusual for a transition metal in the (II) oxidation state, and can be attributed to the π-electron acceptor properties of both the polypyridyl ligands and the phenyl group. Since amides, being poor π-acceptor ligands, are rapidly released from the coordination sphere of ruthenium(II), the final product of this process is the [Ru(tpy)(bpy)(OH)]+ complex. The activation parameters for this nitrile hydrolysis have been determined and compare reasonably well with other values for similar reactions.  相似文献   

20.
The reaction of Schiff base 1,7-bis-(pyridin-2-yl)-2,6-diaza-1,6-heptadiene (L) with either NiCl2·6H2O or [PdIICl2(CH3CN)2]/Na[BF4] in 1?:?1 stoichiometry yielded mononuclear ionic complexes, trans-[NiII(L)(H2O)2]Cl2·3H2O (1·3H2O) and [PdII(L)][BF4]2 (2), respectively; the reaction of L with [PdIICl2(CH3CN)2] in 1?:?2 ratio yielded dinuclear cis-[PdII 2(μ-L)Cl4] (3). Complexes 1–3 were characterized by vibrational spectroscopy and X-ray diffraction; diamagnetic 2 and 3 were also characterized by NMR in solution. The molecular structures of 1 and 2 displayed tetradentate coordination of L with formation of two five-membered and one six-membered chelate rings for both complexes. In 3, L showed bidentate coordination mode for each pyridylimine toward PdII. Complex 1 has distorted octahedral geometry around NiII and an extended hydrogen-bond network; distorted square planar geometry around PdII in 2 and 3 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号