首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a procedure to synthesize colloidal clusters with polyhedral morphologies in high yield (liter quantities at up to 70% purity) using a combination of emulsion polymerization and inorganic surface chemistry. We show that the synthesis initially used for silica-polystyrene hybrid clusters can be generalized to create clusters from other inorganic and polymer particles. We also show that high yields of particular morphologies can be obtained by precise control of the inorganic seed particle size, a finding that can be explained using a hard-sphere packing model. These clusters can be further chemically modified for a variety of applications. Introducing a cross-linker leads to colloidal clusters that can be index matched in an appropriate solvent, allowing them to be used for particle tracking or optical studies of colloidal self-assembly. Also, depositing a thin silica layer on these colloids allows the surface properties to be controlled using silane chemistry.  相似文献   

2.
Zhou  Yunyun  Hua  Panpan  Wu  Bin  Bao  Xiaoyan  Li  Xuping  Zhu  Liangliang 《中国科学:化学(英文版)》2019,62(2):220-225
In nanoscience, molecular switches have played a significant role to deliver different control abilities to practical functions,whereas high-contrast luminescence switchable manipulation at nanoscale is still limited. Since the tuning for emission behavior with high contrast ratio strongly connects to numerous visualized sensing and optoelectronic applications, we here report that autonomous p H control can be enrolled to address a high-contrast molecular emission change at the nanoaggregated level, for gaining a flicker luminescence performance in aqueous media. Employing a BODIPY contained dynamic covalent dye, we find its luminescent signal and nanoaggregate size can be spontaneously adjusted in water. On this basis, high-contrast luminescence switching of the material can be achieved upon the alternate introduction of base and acid into the aggregation state. Such a behavior can be attributed to a p H triggered photo-induced electron transfer regulation process. The dye aggregates can be well endocytosed for bioimaging and its luminescent variation can be autonomously displayed as a flicker effect. These results provide new visions for the design and development of smart materials with a dynamic luminescence behavior.  相似文献   

3.
Summary It is shown how a self-organizing neural network such as the one introduced by Kohonen can be used to analyze features of molecular surfaces, such as shape and the molecular electrostatic potential. On the one hand, two-dimensional maps of molecular surface properties can be generated and used for the comparison of a set of molecules. On the other hand, the surface geometry of one molecule can be stored in a network and this network can be used as a template for the analysis of the shape of various other molecules. The application of these techniques to a series of steroids exhibiting a range of binding activities to the corticosteroid-binding globulin receptor allows one to pinpoint the essential features necessary for biological activity.  相似文献   

4.
Hsiung SK  Lee CH  Lee GB 《Electrophoresis》2008,29(9):1866-1873
In this study, a new design of a controllable micro-lens structure capable of the enhancement of LIF detection system has been demonstrated, which can be further integrated with buried optical fibers on a micro-CE chip for sample separation and detection. Two pneumatic side-chambers were placed between a micro-CE channel and an optical fiber channel. The intervals between the side-chamber and the microchannel were used to form two surfaces of the controllable micro-lens structure. Deformations of the two surfaces can be generated after pressurized index-matching fluid was injected into the pneumatic side-chambers. The side-chambers can be deflected as a double convex lens to focus both the excitation light source and the fluorescent emission signal. The profile and the focal length of the micro-lens structure can be actively adjusted by applying different liquid pressures so that biosamples with a low concentration can be detected. Using low-cost polymeric materials such as polydimethylsiloxane, rapid and reliable fabrication techniques involving standard lithography and replication process was employed for the formation of the proposed chip device. Experimental results revealed the controllable micro-lens structure can be successfully deformed as a convex lens to focus the laser light source and the collected fluorescence signal can be enhanced accordingly. The power amplitude of excitation laser light can be enhanced by 5.4-fold. FITC dye and DNA markers were then utilized for micro-CE testing. The results indicated that the signal amplitude could be enhanced 2.5-fold when compared to the case without the activation of the micro-lens. According to the experimental results, the developed device has a great potential to be integrated with other microfluidic devices for further biomedical applications.  相似文献   

5.
Passive sampling relies on the uptake of contaminants into appropriate sampling devices along a diffusion gradient without using pumps or bailers. Thus, for example, in groundwater sampling, changes to flow due to pumping can be avoided. If the diffusion gradient can be maintained for extended periods, contaminants can be sampled continuously over time without any action, allowing to determine time-weighted average contaminant concentrations. We here show that the Ceramic Dosimeter, a solid receiving phase passive sampler using a ceramic membrane as sorbent container and diffusion barrier, can be used without calibration for the long-term monitoring of polycyclic aromatic hydrocarbons (PAHs) in groundwater.  相似文献   

6.
Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.  相似文献   

7.
Using a parallel microcolumn switching liquid chromatography set-up coupled to a quadrupole time-of-flight mass spectrometer, a rapid liquid chromatography/mass spectrometric (LC/MS) protein identification method is presented. Without prior sample clean-up up to 300 protein digest samples a day can be processed. Using data-directed acquisition, up to 10 fragmentation analyses for each protein sample can be acquired in the same chromatographic run that can be used for database searching. Using internal peptide sequence information, protein databases and the various nucleic acid databases can both be queried for cross-species identification of the protein sample. The method was evaluated and put into force to generate data for a tobacco cell culture protein database.  相似文献   

8.
We present a new generic strategy to fabricate nanoparticles in the "cages" within the fibrous networks of supramolecular soft materials. As the cages can be acquired by a design-and-production manner, the size of nanoparticles synthesized within the cages can be tuned accordingly. To implement this idea, both selenium and silver were chosen for the detailed investigation. It follows that the sizes of selenium and silver nanoparticles can be controlled by tuning the pore size of the fiber networks in the material. When the concentration of the gelator is high enough, monodisperse nanoparticles can be prepared. More interestingly, the morphology of the nanoparticles can be altered: silver disks can be formed when the concentrations of both the gelator and silver nitrate are sufficiently low. As the fiber network serves as a physical barrier and semisolid support for the nanoparticles, the stability in the aqueous media and the ease of application of these nanoparticles can be substantially enhanced. This robust surfactant-free approach will not only allow the controlled fabrication of nanoparticles, but also can be applied to the fabrication of composite materials for robust applications.  相似文献   

9.
Optimising synthetic conversions and assessing catalyst performance is a tedious and laborious endeavour. Herein, we present an automated alternative to the commonly applied sequential approaches that are used to increase catalyst discovery process efficiencies by increasing the number of entities that can be tested. This new approach combines conversion of the reactants and determination of product formation into a single comprehensive reaction detection system that can be operated with minimal catalyst and reactant consumption. With this approach, rudimentary reaction conditions can be quickly optimised and the same system can then be used to screen for the optimal homogenous catalyst in a selected solution‐phase synthetic conversion. The system, which is composed of standard HPLC components, can be used to screen catalyst libraries at a repetition rate of five minutes and can be run unsupervised. The sensitive mass spectrometric detection that is implemented in the reaction detection methodology can be used for the simultaneous monitoring of reactants, catalysts and product ions. In the experiments, the three‐component reaction that gives a substituted 2‐imidazoline was optimised. Afterwards, the same method was used to assess a library of ferrocene‐based Lewis acid catalysts for performance in the aforementioned conversion in six different solvents. We demonstrate the feasibility of using this methodology to directly compare the performance results obtained in different solvents by calibrating the solvent‐specific MS responses.  相似文献   

10.
These results indicate that a C, H, and N system can be automated and computerized for increased flexibility while maintaining a high degree of accuracy and precision. There are a number of significant advantages which can be realized in terms of hard-copy summaries, report formats that can be torn off and sent out, and tube files that can be used to summarize which samples are currently being run. There are some drawbacks in the fact that specialty runs must be made for high nitrogen-containing compounds, liquids, and hydroscopic materials. However, the time saving is substantial, and the analyst has blocks of time to run other determinations. Satisfactory turn-around times can be maintained. This indicates that the automation and computerization are well worth the efforts.  相似文献   

11.
A solid-phase reaction technique is described for improved derivatization of aliphatic amines, amino alcohols and amino acids. A polymeric activated ester is used for the immobilization of the 3,5-dinitrobenzoyl group, which can then be used for derivatizations of strong or weak nucleophiles, while avoiding solution-phase derivatization conditions. The reagent is easily prepared and can be regenerated after use to attain its original reactivity. The resulting chromatograms are free of system peaks due to excess derivatizing reagent, and sample handling is kept to a minimum. The reagent can be used in conjunction with both reversed- and normal-phase chromatography and can be used for off-line gas chromatographic or high-performance liquid chromatographic (HPLC) derivatizations. In addition, the reagent can be used on-line for derivatization in HPLC. Since the labelling reagent is a strong pi-acid, chiral substrates can be derivatized and separated on a Pirkle-type pi-donor column. The confirmation and quantitation of amphetamine in urine was accomplished using a polymer containing two labelling moieties, p-nitrobenzoyl and 3,5-dinitrobenzoyl. The derivatization and separation of chiral and achiral amines, amino alcohols and amino acids is described.  相似文献   

12.
Although known since the 1950s, free-radical carbonylation has not received much attention until only recently. In the last few years the application of modern free-radical techniques has revealed the high synthetic potential of this reaction as a tool for introducing CO into organic molecules. Clearly now is the time for a renaissance of this chemistry. Under standard conditions (tributyltin hydride/CO) primary, secondary, as well as tertiary alkyl bromides and iodides can be efficiently converted into the corresponding aldehydes. Aromatic and α,β-unsaturated aldehydes can also be prepared from the parent aromatic and vinylic iodides. If the reaction is carried out in the presence of alkenes containing an electron-withdrawing substituent, the initially formed acyl radical subsequently adds to the alkene, leading to a general method for the synthesis of unsymmetrical ketones. This three-component coupling reaction can be extended successfully to allyltin-mediated reactions. Thus, β,γ-enones can be prepared from organic halides, CO, and allyltributylstannanes. In a remarkable one-pot procedure alkyl halides can be treated with a mixture of alkene, allyltributylstannane, and carbon monoxide in a four-component coupling reaction that provides β-functionalized δ,?-unsaturated ketones by the formation of three new C? C bonds. The reaction of 4-pentenyl radicals with CO leads to acyl radical cyclization, which provides a useful method for the synthesis of cyclopentanones. Certain useful one-electron oxidations can be combined efficiently with free-radical carbonylations. These findings and others discussed in this article clearly demonstrate that free-radical carbonylation can now be considered a practical alternative to transition metal mediated carbonylation.  相似文献   

13.
Ionoluminescence (IL) has mainly been used to detect impurities or defects inside synthetic materials. This paper gives a summary of new applications of IL to natural minerals that might be found in ancient pieces of jewellery or decorative artefacts (affreschi, stucchi, mosaics). Some relevant examples of its use for archaeometrical purposes are given to highlight the potential of the technique. Chemical information can be obtained by luminescent characterization of minerals. IL spectra act as digital imprint for elements or defects inside each material, enabling differentiation of natural specimens from imitations and/or synthetic analogues. Crystal field theory indicates it is the coordination number of the emitter inside the crystalline structure that gives information on its valence. Historical confusion between rubies and red spinel can easily be resolved by analysis of IL spectra. Modern synthetic diamonds can also be discriminated and blue sapphire can be distinguished from blue kyanite, a silicate that is currently being sold as its imitation. The technique can also differentiate between the synthetic and the natural gems. Polymorphs can be identified, and it is possible to recognize minerals from isomorphic series (from the same chemical group with the same structure) even when they share the same light emitter (e.g. Mn2+, in carbonates). High-quality glasses (e.g. laser glasses) which are normally used for faking gemstones can be also detected. We fully believe IL will, in the future, be a powerful technique for determining the crystallinity of solids. This paper gives an overview of possible applications of IL to archaeometry for mineral characterization; this is a new application that still requires further study.  相似文献   

14.
Wastewaters from numerous industrial and laboratory operations can contain toxic or undesirable components such as metal ions, which must be removed before discharge to surface waters. Adsorption processes that have high removal efficiencies are attractive methods for removing such contaminants. For economic operations, it is desirable to have an adsorbent that is selective for the metal contaminant of interest, has high capacity for the contaminant, has rapid adsorption kinetics, can be economically produced, and can be regenerated to a concentrated waste product or decomposed to a low-volume waste. Selected microorganisms are potentially useful adsorbents for these applications because they can be inexpensive, have high selectivities, and have high capacities for adsorption of many heavy metals, which are often problems in a variety of industries.  相似文献   

15.
We report a simple method for the photothermal welding of nonwoven mats of electrospun nanofibers by introducing a near‐infrared (NIR) dye such as indocyanine green. By leveraging the strong photothermal effect of the dye, the nanofibers can be readily welded at their cross points or even over‐welded (i.e., melted and/or fused together) to transform the porous mat into a solid film upon exposure to a NIR laser. While welding at the cross points greatly improves the mechanical strength of a nonwoven mat of nanofibers, melting and fusion of the nanofibers can be employed to fabricate a novel class of photothermal papers for laser writing or printing without chemicals or toner particles. By using a photomask, we can integrate photothermal welding with the gas foaming technique to pattern and then expand nonwoven mats into 3D scaffolds with well‐defined structures. This method can be applied to different combinations of polymers and dyes, if they can be co‐dissolved in a suitable solvent for electrospinning.  相似文献   

16.
A method is described for the microscale evaluation of sample heterogeneity as applied to in-situ ion microprobe analysis. Computer feature analysis of digitized ion images is utilized to generate sampling constants, which can be related to the degree of heterogeneity present for a particular constituent in the sample. The expected precision for a series of analyses, or the number of analyses required for a desired precision can also be determined. This approach, which is experimentally verified for NBS SRM-664 low-alloy steel, can be used both to minimize sampling error and to assess the applicability of specific reference materials to microprobe analysis.  相似文献   

17.
Polymers containing intact lactone groups are a new class of macromolecules with reactive groups, which are relatively easy to obtain by polymerization, polycondensation and polyaddition, as well as by reactions on existing macromolecules. Polymers with β-lactone Groups in particular can enter into numerous addition reactions, which can be used, for example, to obtain macromolecules containing hydroxy acid or amino acid groupings. The reactions proceed under mild conditions, and can even be carried out in aqueous media, frequently giving water-soluble polymers. The polymers can be cross-linked at low temperatures, even from the aqueous phase, by the addition of bifunctional or oligofunctional reagents. Polymers containing β-lactone groups can also be used as a basis for graft co-polymers; polyester or polyether branches can be grafted on, depending on whether monomeric lactones or monomeric epoxides are used.  相似文献   

18.
Sample controlled thermal analysis (SCTA) can be used in several manners with respect to adsorbents. Almost 70% of adsorbent synthesis procedures involve a thermal step that can be adapted to a sample controlled method. In this respect, SCTA has been used for the preparation of activated alumina, calcination of zeolites and activation of carbons. The thermodesorption of adsorbed molecules can also be carried out using a sample controlled method. Here, both the surface area and pore volume of adsorbents can be assessed. Finally, SCTA can be highly beneficial in the thermal pretreatment of adsorbents prior to adsorption. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Modern NMR spectrometers require receivers to work within their linear ranges to maintain high fidelity line shape and peak integration. For better sensitivity, the receiver gain has to be optimized to detect dilute analytes; however, gain compression needs to be avoided. Here, we explore if and how linear receiver performance can be achieved for a couple of representative gain settings on a spectrometer. In the case of slight receiver gain compression, not only will the peak integral be attenuated but a very small line‐shape change can also be observed. Hence, we can resort to resonance integration and line‐shape analysis for gain compression diagnosis. As such, NMR signals, regardless of their observed amplitude difference in frequency domain, can be accurately compared in quantitative analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A novel methodology to design on-chip conduction channels is presented for expansion of low-dispersion separation channels. Designs are examined using two-dimensional numerical solutions of the Laplace equation with a Monte Carlo technique to model diffusion. The design technique relies on trigonometric relations that apply for ideal electrokinetic flows. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeability. Multiple interfaces can be placed in series along a channel. The resulting channels can be expanded to extreme widths while minimizing dispersion of injected analyte bands. These channels can provide a long path length for line-of-sight optical absorption measurements. Expanded sections can be reduced to enable point detection at the exit section of the channel. Designed to be shallow, these channels have extreme aspect ratios in the wide section, greatly increasing the surface-to-volume ratio to increase heat removal and decrease unwanted pressure-driven flow. The use of multiple interfaces is demonstrated by considering several three-interface designs. Faceted flow splitters can be constructed to divide channels into any number of exit channels while minimizing dispersion. The resulting manifolds can be used to construct medians for structural support in wide, shallow channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号