首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We have studied the hole charging spectra of self-assembled InAs quantum dots in perpendicular magnetic fields by capacitance-voltage spectroscopy. From the magnetic-field dependence of the individual peaks we conclude that the s-like ground state is completely filled with two holes but that the fourfold degenerate p shell is only half filled with two holes before the filling of the d shell starts. The resulting six-hole ground state is highly polarized. This incomplete shell filling can be explained by the large influence of the Coulomb interaction in this system.  相似文献   

2.
We study core/shell heterostructures in which a core (SiO2) is overcoated with a shell of ZnO quantum dots, randomly distributed on the sphere surface with the surface filling factor P∼0.45. Due to the high surface energy of SiO2 spheres, ZnO quantum dots have the shape of disks in which, in spite of the large radii, quantum size effects of excitons are retained. The height of ZnO disks estimated by the effective mass approximation is comparable with the exciton diameter in bulk ZnO. Analysis of optical spectra has shown that, at the given density of ZnO quantum dots, the exciton system is above the percolation threshold. The quantitative parameters characterizing such phenomenon are obtained using the elements of percolation theory and the topology of the samples.  相似文献   

3.
田昕  曹立新  柳伟  苏革  董博华 《发光学报》2012,33(7):736-741
本文采用水相合成方法制备了ZnS∶Cu量子点并进行了ZnS壳层修饰,研究了壳层厚度对ZnS∶Cu量子点光学性质的影响,采用TEM、XRD、PL、PLE和UV-Vis等测试方法对其进行了表征。实验结果表明,合成的ZnS∶Cu/ZnS量子点为立方闪锌矿,尺寸分布均匀呈球形,分散性良好,经过壳层修饰平均粒径由2 nm增加到3.2 nm。随着ZnS壳与ZnS核量的比的增加,量子点的PLE激发峰位置和UV-Vis吸收谱线出现红移,也说明了量子点的尺寸增大,证明ZnS在ZnS∶Cu量子点的表面生长,形成了核壳结构的ZnS∶Cu/ZnS量子点。随着壳层增厚,量子点与铜离子发光中心相关的发射峰强度先增大后减小,当壳核比ns/nc=2.5时,发光强度达到最大。  相似文献   

4.
We synthesize colloidal CdSe/CdS core/shell quantum dots with different shell thicknesses, and there are five samples including CdSe core dots, and CdSe/CdS core/shell dots with 1-4 CdS layers. X-ray diffraction and Raman measurements indicate that the stress in CdSe core becomes stronger with the increasing shell thickness, and the optical measurements show that when the shell becomes thicker, the photoluminescence quantum yield is enhanced, and the radiative decay is also expedited. The temperature-dependent optical spectra are measured. The relation between the microstructure and the optical properties is discussed.  相似文献   

5.
采用原位聚合法制备了以ZnO量子点为核、石墨烯量子点(GQDs)为壳的ZnO@ GQDs核壳结构量子点。通过TEM和HR-TEM对量子点进行形貌和结构的分析表征。结果表明,合成的ZnO@ GQDs核壳结构量子点为球形,粒径为~7 nm,且尺寸均匀。PL光谱研究表明,新型量子点的发射峰位于369 nm,发光峰窄、强度高;相对于ZnO的本征发射峰,GQDs的引入使得ZnO@GQDs核壳量子点的荧光发射峰出现蓝移、强度变高,从而使复合量子点的荧光具有较纯的色度和较高的强度,说明GQDs的引入具有协同优化效应。该量子点有望应用于LED显示器件。  相似文献   

6.
We have investigated electron transport and electron filling in single InAs quantum dots (QDs) using nanogap electrodes. Elliptic InAs QDs with diameter of 60/80 nm exhibited clear shell filling up to 12 electrons. Shell-dependent charging energies and level quantization energies for the s, p, and d states were determined from the addition energy spectra. Furthermore, it is found that the charging energies and the tunneling conductances strongly depend on the shell, reflecting that the electron wave functions for higher shells are more extended in space.  相似文献   

7.
We study 3D globular photonic crystals based on synthetic opals filled with semiconductor core/shell quantum dots CdSe/CdS by measuring the photoluminescence spectra. The spectra were obtained using 369, 384, and 408 nm LED light excitation and involving a pulse YAG laser operating at 365 and 266 nm. The study shows that the photoluminescence spectra of opal filled with CdSe/CdS changes sufficiently in comparison with spectra taken for pure opal and a reference colloidal solution of CdSe/Cds quantum dots in toluene. Such opals may be used to fabricate a narrow-band light sources.  相似文献   

8.
The absorption spectra and the refractive index changes are calculated theoretically for an exciton in a core/shell quantum dot. The advantage of our methodology is that one can investigate the influence of the repulsive core by varying two parameters in the confinement potential. The dimensionality effect of exciton quantum dots on the optical absorptions has been studied. It has been found that in the same regime, the optical absorption intensities of excitons are much smaller for the core/shell quantum dots than for the two-dimensional quantum rings. The linear and the nonlinear optical absorption coefficients and refractive index changes have been examined with the change of the confinement potential. The results show that the optical absorptions and the refractive index changes are strongly affected by the repulsive core of core/shell quantum dots. Moreover, the calculated results also reveal that as the inner radius increases, the peak values of the absorption coefficients and the refractive index changes of an exciton will show the optical Aharonov–Bohm oscillation in core/shell quantum dots.  相似文献   

9.
We present a theory of magnetic exchange interactions in quantum dots containing electrons and magnetic ions. We find the interaction between the electron and Mn ion to depend strongly on the number of electrons. It can be switched off for closed shell configurations and maximized for partially filled shells. However, unlike the total electron spin S which is maximized for half-filled shells, we predict the exchange interaction to be independent of the filling of the electronic shell. We show how this unusual effect manifests itself in quantum dot addition and excitation spectrum.  相似文献   

10.
We present a chemical process for the decoration of self-assembled two-dimensional peptide fibrils with two different sizes of CdSe@ZnS core–shell quantum dots (Qdots) capped with trioctylphosphine oxide molecules. The attachment of the semiconducting nanoparticles to the fibrils is directed via disulfide bond between the quantum dot and cysteine aminoacids that are deliberately impeded in the peptide structures. A significant red shift in the emission spectra of the quantum dots is observed and attributed to the synergistic interaction between adjacent nanoparticles arranged on peptide film templates extending over hundreds of nanometers.  相似文献   

11.
水溶胶CdSe/CdS核/壳结构纳米晶制备及光学性质的研究   总被引:16,自引:3,他引:13  
以巯基乙酸为稳定剂在水溶液中合成了水溶胶CdSe/CdS核/壳结构的量子点,利用X射线粉末衍射(XRD)和X射线光电子能谱(XPS)对量子点结构进行了表征;并对化学组成和尺寸分布进行了研究。通过紫外-可见吸收光谱、激发光谱与发射光谱研究了它们的发光特性。  相似文献   

12.
We study the electronic structure of a single self-assembled InAs quantum dot by probing elastic single-electron tunneling through a single pair of weakly coupled dots. In the region below pinch-off voltage, the nonlinear threshold voltage behavior provides electronic addition energies exactly as the linear, Coulomb blockade oscillation does. By analyzing it, we identify the s and the p shell addition spectrum for up to six electrons in the single InAs dot, i.e., one of the coupled dots. The evolution of the shell addition spectrum with magnetic field provides Fock-Darwin spectra of the s and p shells.  相似文献   

13.
We discuss the preparation and spectroscopic characterisation of a single InAs/InP quantum dot suitable for long-distance quantum key distribution applications around λ=1.55 μm. The dot is prepared using a site-selective growth technique which allows a single dot to be deposited in isolation at a controlled spatial location. Micro-photoluminescence measurements as a function of exciton occupation are used to determine the electronic structure of the dot. Biexciton emission, shell filling and many-body re-normalization effects are observed for the first time in single InAs/InP quantum dots.  相似文献   

14.
Water-soluble cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots were synthesized in aqueous solution using trisodium citrate as modifier. The crystal structure, morphology, component, and spectral properties of cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots were characterized by X-ray power diffraction, transmission electron microscope, energy dispersive X-ray analysis, infrared spectrum, ultraviolet–visible absorption spectrum, and fluorescence spectrum. The results show that the spherical citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots with diameter around 3.6 nm belong to the cubic zinc blende structure. The citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots show a narrow, symmetric, and strong fluorescence emission spectrum band with narrow full width at half maximum of 53 nm, and the fluorescence quantum yield can reach up to 37.3%. The high-quality citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots with good fluorescence properties have potential for application in biological fluorescence analysis.  相似文献   

15.
We have studied the charging of InAs quantum dots with holes in perpendicular fields up to 16 T by capacitance—voltage spectroscopy. The first two charging peaks show almost no shift with magnetic field which is consistent with the filling of a twofold degenerate s-like state with no orbital angular momentum. The next four charging peaks shift towards lower and higher energy in an alternating fashion. Peaks 5 and 6 shift approximately twice as strong as peaks 3 and 4. This behavior cannot be explained by the charging of a fourfold degenerate p-shell according to Hund′s first rule. We speculate that the p-shell is not completely filled before the filling of the d-shell starts.  相似文献   

16.
Low-temperature transport measurements have been carried out on single-wall carbon-nanotube quantum dots in a weakly coupled regime in magnetic fields. Four-electron shell filling was observed, and the magnetic field evolution of each Coulomb peak was investigated. Excitation spectroscopy measurements have revealed Zeeman splitting of single particle states for one electron in the shell, and demonstrated singlet and triplet states with direct observation of the exchange splitting at zero-magnetic field for two electrons in the shell, the simplest example of Hund's rule.  相似文献   

17.
A light emitting diode has been developed on the basis of multilayer nanostructures in which CdSe/CdS semiconductor colloidal quantum dots serve as emitters. Their absorption, photo-, and electroluminescence spectra have been obtained. The strong influence of the size effect and the density of particles in the layer on the spectral and electrophysical characteristics of the diode has been demonstrated. It has been shown that the rates of the transfer of the exciton excitation energy from organic molecules to quantum dots increase strongly even at a small increase in the radius of the core (CdSe) of a particle and depend strongly on the thickness of the shell (CdS) of the particle. The optimal arrangement of the layer of quantum dots with respect to the p-n junction has been estimated from the experimental data. The results demonstrate that the spectral characteristics and rates of the electron processes in light-emitting devices based on quantum dots incorporated into an organic matrix can be efficiently controlled.  相似文献   

18.
We study electronic configurations in a single pair of vertically coupled self-assembled InAs quantum dots, holding just a few electrons. By comparing the experimental data of nonlinear single-electron transport spectra in a magnetic field with many-body calculations, we identify the spin and orbital configurations to confirm the formation of molecular states by filling both the quantum mechanically coupled symmetric and antisymmetric states. Filling of the antisymmetric states is less favored with increasing magnetic field, and this leads to various magnetic field induced transitions in the molecular states.  相似文献   

19.
Capacitance-voltage and deep level transient spectroscopy were used to study the capture characteristics of self-assembled InAs/InAlAs quantum dots grown on the InP substrate. It is found that the number of electrons captured by quantum dots can be controlled by varying the width of applied pulse voltage in the DLTS measurements. The Coulomb charging energy and the time of capture can be deduced from the filling time dependent deep level transient spectra.  相似文献   

20.
ZnCuInS/ZnSe/ZnS量子点是一种无毒,无重金属的“绿色”半导体纳米材料。在研究中,制备了三种尺寸的ZnCuInS/ZnSe/ZnS核壳量子点,其直径分别为3.3,2.7,2.3 nm。通过测量不同尺寸的ZnCuInS/ZnSe/ZnS量子点的光致发光光谱,其发射峰值波长随尺寸的减小而蓝移。其吸收峰值波长和发射峰值波长分别是510,611(3.3 nm),483,583(2.7 nm)以及447,545 nm(2.3 nm)。ZnCuInS/ZnSe/ZnS量子点具有显著的尺寸依赖效应。ZnCuInS/ZnSe/ZnS量子点的斯托克斯位移分别为398 meV(3.3 nm),436 meV(2.7 nm)以及498 meV(2.3 nm),这样大的斯托克斯位移证明,ZnCuInS/ZnSe/ZnS量子点的发光机制与缺陷能级有关。同时,对直径为3.3 nm的ZnCuInS/ZnSe/ZnS量子点进行了温度依赖的光致发光光谱的测量,当温度为15~90 ℃时,该量子点发射峰值波长随温度的升高而红移,发光强度随温度的升高而降低,说明ZnCuInS/ZnSe/ZnS量子点是以导带能级与缺陷能级之间跃迁为主的复合发光。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号