首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We study the effect on the density of states in mesoscopic ballistic billiards to which a superconducting lead is attached. The expression for the density of states is derived in the semiclassical S-matrix formalism shedding light onto the origin of the differences between the semiclassical theory and the corresponding result derived from random matrix models. Applications to a square billiard geometry and billiards with boundary roughness are discussed. The saturation of the quasiparticle excitation spectrum is related to the classical dynamics of the billiard. The influence of weak magnetic fields on the proximity effect in rough Andreev billiards is discussed and an analytical formula is derived. The semiclassical theory provides an interpretation for the suppression of the proximity effect in the presence of magnetic fields as a coherence effect of time reversed trajectories. It is shown to be in good agreement with quantum mechanical calculations. Received 21 August 1999 and Received in final form 21 March 2001  相似文献   

2.
The density of states in the semiclassical Andreev billiard is theoretically studied and shown to be determined by the fluctuations of the classical Lyapunov exponent lambda. The rare trajectories with a small value of lambda give rise to an anomalous increase of the Ehrenfest time tauE approximately |lnvariant Planck's over 2pi|/lambda and, consequently, to the appearance of Andreev levels with small excitation energy. The gap in spectrum is obtained, and fluctuations of the value of the gap due to different positions of superconducting lead are considered.  相似文献   

3.
量子疤痕是波函数在经典不稳定周期轨道周围反常凝聚的一种量子或波动现象.人们对疤痕态的量子化条件进行了大量研究,对深入理解半经典量子化起到了一定的促进作用.之前大部分研究工作主要集中在硬墙量子弹球上,即给定边界形状的无穷深量子势阱系统.本文研究具有光滑复杂势场的二维量子弹球系统,考察疤痕态的量子化条件及其重复出现的规律,得到了与硬墙弹球不一样的结果,对理解这类现象是一个有益的补充.这些结果将有助于理解具有无规长程杂质分布的二维电子系统的态密度谱和输运行为.  相似文献   

4.
In contact with a superconductor, the Andreev reflection of the electrons locally modifies the N metal electronic properties, including the local density of states (LDOS). We investigated the LDOS in superconductor-normal metal (Nb-Au) bilayers using a very low temperature (60 mK) STM on the normal metal side. High resolution tunneling spectra measured on the Au surface show a clear proximity effect with an energy gap of reduced amplitude compared to the bulk Nb gap. The dependence of this mini-gap width with the normal metal thickness is discussed in terms of the Thouless energy. Within the mini-gap, the density of states does not reach zero and shows clear sub-gap features. We compare the experimental spectra with the well-established quasi-classical theory.  相似文献   

5.
Rashba billiards     
We study the energy levels of non-interacting electrons confined to move in two-dimensional billiard regions and having a spin-dependent dynamics due to a finite Rashba spin splitting. The free space Green's function for such Rashba billiards is constructed analytically and used to find the area and perimeter contributions to the density of states, as well as the corresponding smooth counting function. We show that, in contrast to systems with spin-rotational invariance, Rashba billiards always possess a negative energy spectrum. A semi-classical analysis is presented to interpret the singular behavior of the density of states at certain negative energies for circular Rashba billiards. Our detailed analysis of the spin structure of circular Rashba billiards reveals a finite out-of-plane spin projection for electron eigenstates.  相似文献   

6.
We present a classical and quantum mechanical study of an Andreev billiard with a chaotic normal dot. We demonstrate that the nonexact velocity reversal and the diffraction at the edges of the normal-superconductor contact render the classical dynamics of these systems mixed indicating the limitations of a widely used retracing approximation. We point out the close relation between the mixed classical phase space and the properties of the quantum states of Andreev billiards, including periodic orbit scarring and localization of the wave function onto other classical phase space objects such as intermittent regions and quantized tori.  相似文献   

7.
We investigate statistical aspects of the entanglement production for open chaotic mesoscopic billiards in contact with superconducting parts, known as Andreev billiards. The complete distributions of concurrence and entanglement of formation are obtained by using the Altland–Zirnbauer symmetry classes of circular ensembles of scattering matrices, which complements previous studies in chaotic universal billiards belonging to other classes of random matrix theory. Our results show a unique and very peculiar behavior: the realization of entanglement in a Andreev billiard always results in non-separable state, regardless of the time reversal symmetry. The analytical calculations are supported by a numerical Monte Carlo simulation.  相似文献   

8.
We introduce quantum maps with particle-hole conversion (Andreev reflection) and particle-hole symmetry, which exhibit the same excitation gap as quantum dots in the proximity to a superconductor. Computationally, the Andreev maps are much more efficient than billiard models of quantum dots. This makes it possible to test analytical predictions of random-matrix theory and semiclassical chaos that were previously out of reach of computer simulations. We have observed the universal distribution of the excitation gap for a large Lyapunov exponent and the logarithmic reduction of the gap when the Ehrenfest time becomes comparable to the quasiparticle dwell time.  相似文献   

9.
We study wave functions and their nodal patterns in Andreev billiards consisting of a normal-conducting (N) ballistic quantum dot in contact with a superconductor (S). The bound states in such systems feature an electron and a hole component which are coherently coupled by the scattering of electrons into holes at the S-N interface. The wave function “lives” therefore on two sheets of configuration space, each of which features, in general, distinct nodal patterns. By comparing the wave functions and their nodal patterns for holes and electrons detailed tests of semiclassical predictions become possible. One semiclassical theory based on ideal Andreev retroreflection predicts the electron- and hole eigenstates to perfectly mirror each other. We probe the limitations of validity of this model both in terms of the spectral density of the eigenstates and the shape of the wavefunctions in the electron and hole sheet. We identify cases where the Chladni figures for the electrons and holes drastically differ from each other and explain these discrepancies by limitations of the retroreflection picture.  相似文献   

10.
《Physics Reports》2002,367(4):249-385
  相似文献   

11.
A semiclassical expression is derived for the spectral Wigner function of ergodic billiards in terms of a sum over contributions from classical periodic orbits. It represents a generalization of a similar formula by Berry, which does not immediately apply to billiard systems. These results are a natural generalization of Gutzwiller's trace formula for the density of states. Our theory clarifies the origin of scars in the eigenfunctions of billiard systems. However, in its present form, it is unable to predict what states will be dominated by individual periodic orbits. Finally, we compare some of the predictions of our theory with numerical results from the stadium. Within the limitations of numerical resolution, we find agreement between the two.  相似文献   

12.
13.
We use a semiclassical approach for analyzing the tunneling transport through a normal conductor in contact with superconducting mirrors. Our analysis of the electron–hole propagation along semiclassical trajectories shows that resonant transmission through Andreev levels is possible resulting in an excess, low-energy quasiparticle contribution to the conductance. The excess conductance oscillates with the phase difference between the superconductors having maxima at odd multiples of π for temperatures much below the Thouless temperature.  相似文献   

14.
We compute semiclassically and numerically the weights of ray-splitting orbits in the density of states of a rectangular and an annular ray-splitting billiard. The agreement between the semiclassical and the numerical results is very good, confirming the necessity of including reflection and transmission coefficients of non-Newtonian ray-splitting orbits in semiclassical expressions for the density of states of ray-splitting systems.  相似文献   

15.
We present measurements of the potential profile of etched GaInAs/InP billiards and show that their energy gradients are an order of magnitude steeper than those of surface-gated GaAs/AlGaAs billiards. Previously observed in GaAs/AlGaAs billiards, fractal conductance fluctuations are predicted to be critically sensitive to the billiard profile. Here we show that, despite the increase in energy gradient, the fractal conductance fluctuations persist in the harder GaInAs/InP billiards.  相似文献   

16.
This is the third in a series of three papers on quantum billiards with elliptic and ellipsoidal boundaries. In the present paper we show that the integrable billiard inside a prolate ellipsoid has an isolated singular point in its bifurcation diagram and, therefore, exhibits classical and quantum monodromy. We derive the monodromy matrix from the requirement of smoothness for the action variables for zero angular momentum. The smoothing procedure is illustrated in terms of energy surfaces in action space including the corresponding smooth frequency map. The spectrum of the quantum billiard is computed numerically and the expected change in the basis of the lattice of quantum states is found. The monodromy is already present in the corresponding two-dimensional billiard map. However, the full three degrees of freedom billiard is considered as the system of greater relevance to physics. Therefore, the monodromy is discussed as a truly three-dimensional effect.  相似文献   

17.
Quantum billiards have attracted much interest in many fields. People have made a lot of researches on the two-dimensional (2D) billiard systems. Contrary to the 2D billiard, due to the complication of its classical periodic orbits, no one has studied the correspondence between the quantum spectra and the classical orbits of the three-dimensional (3D) billiards. Taking the cubic billiard as an example, using the periodic orbit theory, we find the periodic orbit of the cubic billiard and study the correspondence between the quantum spectra and the length of the classical orbits in 3D system. The Fourier transformed spectrum of this system has allowed direct comparison between peaks in such plot and the length of the periodic orbits, which verifies the correctness of the periodic orbit theory. This is another example showing that semiclassical method provides a bridge between quantum and classical mechanics.  相似文献   

18.
A random billiard is a random dynamical system similar to an ordinary billiard system except that the standard specular reflection law is replaced with a more general stochastic operator specifying the post-collision distribution of velocities for any given pre-collision velocity. We consider such collision operators for certain random billiards that we call billiards with microstructure. Collisions modeled by these operators can still be thought of as elastic and time reversible. The operators are canonically determined by a second (deterministic) billiard system that models “microscopic roughness” on the billiard table boundary. Our main purpose here is to develop some general tools for the analysis of the collision operator of such random billiards. Among the main results, we give geometric conditions for these operators to be Hilbert-Schmidt and relate their spectrum and speed of convergence to stationary Markov chains with geometric features of the microscopic billiard structure. The relationship between spectral gap and the shape of the microstructure is illustrated with several simple examples.  相似文献   

19.
We numerically study quantum mechanical features of the Bunimovich stadium billiard and the rational billiards which approach the former as the number of their sides increases. The statistics of energy levels and eigenfunctions of the rational billiards becomes indistinguishable from that of the Bunimovich stadium billiard below a certain energy. This fact contradicts the classical picture in which the Bunimovich stadium billiard is chaotic, but the rational billiard is pseudointegrable. It is numerically confirmed that the wave functions do not detect the fine structure, which is much smaller than the wavelength.  相似文献   

20.
We present a functional analytic framework based on the spectrum of the transfer operator to study billiard maps associated with perturbations of the periodic Lorentz gas. We show that recently constructed Banach spaces for the billiard map of the classical Lorentz gas are flexible enough to admit a wide variety of perturbations, including: movements and deformations of scatterers; billiards subject to external forces; nonelastic reflections with kicks and slips at the boundaries of the scatterers; and random perturbations comprised of these and possibly other classes of maps. The spectra and spectral projections of the transfer operators are shown to vary continuously with such perturbations so that the spectral gap enjoyed by the classical billiard persists and important limit theorems follow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号