首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to compare the effects of high dose (HD) and low dose (LD) ferumoxides infusions on lesion-to-liver contrast-to-noise ratio (CNR) using four different T(2)-weighted MR sequences. Seventy-three patients with known colorectal liver metastases underwent T(2)-weighted fast spin echo (FSE) imaging before and after ferumoxides. After ferumoxides, T(2)-weighted dual echo (DE) and T(2)-weighted GRE FLASH images were also obtained. To evaluate the relationship between TE length and lesion-to-liver CNR, the same FLASH sequence was repeated in 18 LD patients after lengthening the TE. Ferumoxides was administered at a dose of 15 micromol/kg (HD) and 7.5 micromol/kg (LD) in 45 and 28 patients, respectively. The effects of HD and LD ferumoxides infusions were measured as the percentage signal intensity change (PSIC) in the liver and lesions, lesion-to-liver CNR and the change in lesion-to-liver CNR (DeltaCNR). In both LD and HD groups, all CNR values obtained after SPIO were significantly greater than those observed with unenhanced FSE (p < 0.01). There was no significant difference between the mean CNR values obtained with either dose for any sequence. With the FLASH sequence, CNR increased progressively with longer TE. At the longest TE of 26 ms, mean CNR was higher than that recorded with any of the other sequences. Although mean liver PSIC was significantly greater in the HD group than in the LD group (p < 0.01) because the mean lesion PSIC was also greater in the HD group, the mean DeltaCNR after ferumoxides was not significantly different in the two groups. LD SPIO enhanced MR significantly increases lesion-to-liver CNR compared with unenhanced images. At 1. 0 T, HD and LD ferumoxides infusions produce comparable lesion-to-liver CNR. Our results suggest that at 1.0 T ferumoxides may be administered at a dose of 7.5 micromol/kg without loss of image quality.  相似文献   

2.
In order to predict the most sensitive MR imaging sequence for detecting liver metastases at 1.5 T, in vivo measurements of T1 and T2 relaxation times and proton density were obtained using multipoint techniques. Based on these measurements, two-dimensional contrast contour plots were constructed demonstrating signal intensity contrast between hepatic lesions and surrounding liver parenchyma for different pulse sequences and pulse timing parameters. The data predict that inversion recovery spin echo (IRSE) imaging should yield the greatest contrast between liver metastases and liver parenchyma at 1.5 T, followed by short tau inversion recovery (STIR) and spin-echo (SE) pulse sequences. T2-weighted SE images provided greater liver/lesion contrast than T1-weighted SE pulse sequences. Calculated T1, T2, and proton density values of the spleen were similar to those of hepatic metastatic lesions, indicating that the signal intensity of the spleen may be used as an internal standard to predict the signal intensity of hepatic metastases on T1- and T2-weighted images at 1.5 T.  相似文献   

3.
The (1)H NMR water signal from spectroscopic voxels localized in gray matter contains contributions from tissue and cerebral spinal fluid (CSF). A typically weak CSF signal at short echo times makes separating the tissue and CSF spin-lattice relaxation times (T(1)) difficult, often yielding poor precision in a bi-exponential relaxation model. Simulations show that reducing the variables in the T(1) model by using known signal intensity values significantly improves the precision of the T(1) measurement. The method was validated on studies on eight healthy subjects (four males and four females, mean age 21 +/- 2 years) through a total of twenty-four spectroscopic relaxation studies. Each study included both T(1) and spin-spin relaxation (T(2)) experiments. All volumes were localized along the Sylvian fissure using a stimulated echo localization technique with a mixing time of 10 ms. The T(2) experiment consisted of 16 stimulated echo acquisitions ranging from a minimum echo time (TE) of 20 ms to a maximum of 1000 ms, with a repetition time of 12 s. All T(1) experiments consisted of 16 stimulated echo acquisition, using a homospoil saturation recovery technique with a minimum recovery time of 50 ms and a maximum 12 s. The results of the T(2) measurements provided the signal intensity values used in the bi-exponential T(1) model. The mean T(1) values when the signal intensities were constrained by the T(2) results were 1055.4 ms +/- 7.4% for tissue and 5393.5 ms +/- 59% for CSF. When the signal intensities remained free variables in the model, the mean T(1) values were 1085 ms +/- 19.4% and 5038.8 ms +/- 113.0% for tissue and CSF, respectively. The resulting improvement in precision allows the water tissue T(1) value to be included in the spectroscopic characterization of brain tissue.  相似文献   

4.
Thirteen patients with biopsy proven hepatic lymphoma (2 Hodgkin, 11 Non-Hodgkin) and a control group of 15 patients with hepatic metastases were analyzed quantitatively and qualitatively by MRI. Focal hepatic lymphoma was most reliably detected (eight of eight patients) and appeared hypointense relative to liver on T1 weighted (CNR − 7.4 ± 2.3) and hyperintense on T2 weighted (CNR + 8.4 ± 2.9) images. The mean T1 and T2 relaxation times of focal hepatic lymphoma (T1 = 832 ± 234 msec, T2 = 84 ± 16 ms) differed significantly from adjacent non-tumorous liver (T1 = 420 ± 121 ms, T2 = 51 ± 9 ms; p < 0.05), however CNR values and relaxation times were similar to those of hepatic metastases. Diffuse hepatic lymphoma (microscopic periportal infiltration) was undetectable by MRI in three patients by either morphologic features or quantitative criteria. A mixed pattern of hepatic lymphoma (focal lesions and diffuse infiltration) showed focal areas of slightly decreased signal intensity on T1 weighted images (CNR = −1.7 ± 0.4) while T2 weighted images revealed multiple regions of focal hyperintensity (CNR = +13.3 ± 8.4) superimposed on a diffusely hyperintense liver. Our experience demonstrates that either T1 or T2 weighted techniques are useful in detecting focal and that T2 weighted techniques are useful in detecting mixed hepatic lymphoma. Conventional image derived relaxation time measurements and quantitative parameters were of no additional diagnostic value.  相似文献   

5.
The objective of this study was to implement a clinically relevant multi-slice multi-echo imaging sequence in order to quantify multi-component T2 relaxation times for normal volunteers at both 1.5 and 3 T. Multi-echo data were fitted using a nonnegative least square algorithm. Twelve echo data with nonlinear echo sampling were acquired using a receive-only eight-channel phased array coil and volume head coil for phantoms and normal volunteers, and compared to 32-echo data with linear echo sampling. It was observed that the performance of the 180 degrees refocusing trains was more spatially uniform for the receive-only eight-channel phased array coil than for the head coil, particularly at 3 T. The phantom study showed that the estimated T2 relaxation times were accurate and reproducible for both single- and multi-slice acquisition from a commercial phantom with known T2 relaxation times. Short T2 components (T2 <50 ms) were mainly observed within the white matter for normal volunteers, and the fraction of short T2 water components (i.e., myelin water) was 7-12% of total water. It was observed that the calculated myelin water fraction map from the nonlinearly sampled 12-echo data was comparable with that from the linearly sampled 32-echo data. Quantification of T2 relaxation times from multi-slice images was accomplished with a clinically acceptable scan times (16 min) for normal volunteers by using a nonselective T2 prep imaging sequence. The use of the eight-channel head coil involved more accurate quantification of T2 relaxation times particularly when the number of echoes was limited.  相似文献   

6.
In vivo pelvic imaging of 39 women and in vitro relaxation time measurements of four uterine specimens were performed using an ultra low field (0.02 T) MRI unit. Average T1 times measured in vitro at 37 degrees C for the myometrium and endometrium were 206 ms (SD 47 ms) and 389 ms (SD 21 ms), respectively. Corresponding T2 times were 95 ms (SD 20 ms) and 167 ms (SD 13 ms). The proton relaxation of almost all myometrial specimens proved to be biexponential, but of all endometrial specimens was monoexponential. Contrast measurements between endometrium versus myometrium and myometrium versus the junctional zone were performed after imaging 18 volunteer women using different pulse sequence parameters. Normal uterine structures were optimally demonstrated by SE 700/70. Relatively short repetition times could be used, because spin-lattice relaxation times were short at the low magnetic field. Consequently, the short repetition times allowed averaging of four excitations to create adequate images within an acceptable scanning time. In addition to T2-weighted images a T1-weighted inversion recovery sequence with a short inversion time of 50 ms (IR 1000/50/40) adequately differentiated the three uterine zones. Although pathologic lesions of the uterus including leiomyomas, anomalies and carcinomas were well demonstrated, especially with the T2-weighted spin echo pulse sequence, further investigations are needed to evaluate the optimal technique for ultra low field MR imaging of uterine tumors.  相似文献   

7.
The purpose of this study was to prospectively assess two breath-hold T(2)-weighted fast spin-echo sequences and two breath-hold inversion recovery fast spin-echo sequences to determine their relative ability to detect and characterize focal hepatic lesions. Fourteen patients with a total of nineteen proven focal hepatic lesions were imaged with two breath-hold T(2)-weighted (T2W) fast spin echo sequences (HASTE TE = 66 and HASTE TE = 120), two breath-hold inversion recovery fast spin echo sequences (IRFSE TE = 64 and IRFSE TE = 95), and a nonbreath-hold T(2)-weighted fast-spin echo sequence (FSE TE = 96-120). Contrast-to-noise ratios (CNRs) were measured for all proven lesions on all sequences. Both IRFSE sequences and the HASTE sequence with TE = 66 showed an improvement in lesion-liver and liver-spleen CNRs compared to the nonbreath-hold T2W sequence. The mean difference in CNR between benign and malignant lesions was largest for the HASTE TE = 120 sequence. These preliminary results suggest that a breath-hold IRFSE sequence (TE = 64 or 95) has an equal ability to detect focal hepatic lesions as a nonbreath-hold T2W FSE sequence (TE = 96-120). The HASTE TE = 120 showed the greatest ability to discriminate between benign and malignant lesions.  相似文献   

8.
Gradient recalled echo (GRE) images are sensitive to both paramagnetic deoxyhaemoglobin concentration (via T2*) and flow (via T1*). Large GRE signal intensity increases have been observed in subcutaneous tumors during carbogen (5% carbon dioxide, 95% oxygen) breathing. We term this combined effect flow and oxygenation-dependent (FLOOD) contrast. We have now used both spin echo (SE) and GRE images to evaluate how changes in relaxation times and flow contribute to image intensity contrast changes. T1-weighted images, with and without outer slice suppression, and calculated T2, T2* and "flow" maps, were obtained for subcutaneous GH3 prolactinomas in rats during air and carbogen breathing. T1-weighted images showed bright features that increased in size, intensity and number with carbogen breathing. H&E stained histological sections confirmed them to be large blood vessels. Apparent T1 and T2 images were fairly homogeneous with average relaxation times of 850 ms and 37 ms, respectively, during air breathing, with increases of 2% for T1 and 11% for T2 during carbogen breathing. The apparent T2* over all tumors was very heterogeneous, with values between 9 and 23 ms and localized increases of up to 75% during carbogen breathing. Synthesised "flow" maps also showed heterogeneity, and regions of maximum increase in flow did not always coincide with maximum increases in T2*. Carbogen breathing caused a threefold increase in arterial rat blood PaO2, and typically a 50% increase in tumor blood volume as measured by 51Cr-labelled RBC uptake. The T2* increase is therefore due to a decrease in blood deoxyhaemoglobin concentration with the magnitude of the FLOOD response being determined by the vascular density and responsiveness to blood flow modifiers. FLOOD contrast may therefore be of value in assessing the magnitude and heterogeneity of response of individual tumors to blood flow modifiers for both chemotherapy, antiangiogenesis therapy in particular, and radiotherapy.  相似文献   

9.
This study investigated the feasibility of an MRI protocol providing whole-body T2* maps at 1.5 T. Seven healthy volunteers (mean age=30.1+/-3.7, three women and four men) and two patients (both male, 53 and 46 years old) affected by transfusion-dependent anemias participated in the study. Coronally oriented images of five subsequent body levels were acquired using a fat-suppressed multiecho 2D gradient-echo sequence (12 echo times ranging from 4.8 to 76.3 ms were selected) and afterwards composed. Parametrical T2* maps of the whole body were reconstructed on a pixel-by-pixel basis. For both, healthy volunteers and patients, representative T2* values were computed from extended regions of interest (ROIs). Good-quality whole-body T2* maps were computed in all volunteers and patients. In healthy volunteers, T2* values were assessed in the cerebral white (58.5+/-4.2 ms) and gray (81.4+/-5.5 ms) matter, liver (34.3+/-7.0 ms), spleen (63.5+/-3.3 ms), kidneys (65.4+/-10.3 ms) and skeletal muscles (~30 ms). The liver presented faster relaxation rates in males as compared to females. One patient (serum ferritin concentration=927 microg/dl) showed shortened T2* values in liver (3.6+/-5.5 ms), spleen (3.1+/-4.8 ms), kidneys (11.1+/-7.1 ms) and muscles (25.1+/-3.4 ms). The second patient (serum ferritin concentration=346 microg/dl) presented reduced T2* values in liver (3.9+/-7.3 ms), spleen (20.1+/-9.8 ms) and kidneys (24.6+/-7.7 ms). The presented technique may find clinical application in the assessment of the iron burden in the entire body, and in monitoring of chelation therapies in patients treated with frequent blood transfusions.  相似文献   

10.
To assess the bowel changes in Crohn's disease, 11 consecutive patients underwent magnetic resonance imaging (MRI) study using T(2)-weighted half-Fourier rapid acquisition with relaxation enhancement (RARE) and gadolinium-enhanced standard and fat suppressed spoiled gradient echo (SGE) sequences. Comparison was made between MR findings of disease extent, severity, and complications and clinical data, endoscopic findings and/or surgical specimens in all patients. We found that the half-Fourier RARE images showed bowel wall thickening, dilatation of bowel and bowel obstruction well in all patients, however severity of bowel disease could not be determined as the signal intensity of diseased bowel was comparable to normal bowel in 10/11 patients. Gadolinium-enhanced fat suppressed SGE demonstrated variations of mural enhancement that correlated well with extent of disease severity in 10/11 patients. Complications such as intraperitoneal (i. p.) abscess (2 patients), gastric outlet obstruction (1 patient), bowel obstruction (2 patients), and fistula formation (3 patient), were accurately shown. We conclude that T(2)-weighted half-Fourier RARE and gadolinium-enhanced fat suppressed SGE sequences are complementary techniques that possess different imaging features that are of value for assessing bowel changes in Crohn's disease.  相似文献   

11.
A magnetic resonance imaging method is presented for imaging of heterogeneous broad linewidth materials. This method allows for distortionless relaxation weighted imaging by obtaining multiple phase encoded k-space data points with each RF excitation pulse train. The use of this method, turbo spin echo single-point imaging-(turboSPI), leads to decreased imaging times compared to traditional constant-time imaging techniques, as well as the ability to introduce spin-spin relaxation contrast through the use of longer effective echo times. Imaging times in turboSPI are further decreased through the use of low flip angle steady-state excitation. Two-dimensional images of paramagnetic doped agarose phantoms were obtained, demonstrating the contrast and resolution characteristics of the sequence, and a method for both amplitude and phase deconvolution was demonstrated for use in high-resolution turboSPI imaging. Three-dimensional images of a partially water-saturated porous volcanic aggregate (T(2L) approximately 200 ms, Deltanu(1/2) approximately 2500 Hz) contained in a hardened white Portland cement matrix (T(2L) approximately 0.5 ms, Deltanu(1/2) approximately 2500 Hz) and a water-saturated quartz sand (T(2) approximately 300 ms, T(2)(*) approximately 800 microseconds) are shown.  相似文献   

12.
This paper describes the development and application of a new fast MRI technique based on the DEFT principle. The sequence named MAgnetization RecoverY for Signal Enhancement (MARYSE) is composed of two completely symmetric gradient echoes separated by a 180 degrees refocusing pulse. The RF pulse scheme, 90 degrees x-180 degrees y-90 degrees -x enables restoration of the transverse magnetization along the longitudinal axis, and consequently artificially increases R1 relaxation rate. In this sequence, the period between the excitation pulse and the restoring pulse (Tem: transverse magnetization evolution time) is very short (< 10 ms). This makes possible a significant increase in signal-to-noise ratio, even with a relatively short repetition time (20 ms). Simulations were performed for different values of Tem and TR at definite T1 and T2 and for different values of T1 and T2 at constant Tem and TR. Relevant signal enhancement for species with long relaxation time constants as compared to classical gradient echo and fast spin-echo imaging was expected. In vitro studies on a fat/water phantom confirmed this simulation. Application of MARYSE to mouse brain imaging permitted to visualize almost completely cerebrospinal fluid of the ventricles, a signal usually partially saturated in fast gradient echo imaging.  相似文献   

13.

Objective

T2 mapping has been used widely in detecting cartilage degeneration in osteoarthritis. Several scanning sequences have been developed in the determination of T2 relaxation times of tissues. However, the derivation of these times may vary from sequence to sequence. This study seeks to evaluate the sequence-dependent differences in T2 quantitation of cartilage, muscle, fat and bone marrow in the knee joint at 3 T.

Methods

Three commercial phantoms and 10 healthy volunteers were studied using 3 T MR. T2 relaxation times of the phantoms, cartilage, muscle, subcutaneous fat and marrow were derived using spin echo (SE), multiecho SE (MESE), fast SE (FSE) with varying echo train length (ETL), spiral and spoiler gradient (SPGR) sequences. The differences between these times were then evaluated using Student's t test. In addition, the signal-to-noise ratio (SNR) efficiency and coefficient of variation of T2 from each sequence were calculated.

Results

The average T2 relaxation time was 36.38±5.76 ms in cartilage and 34.08±6.55 ms in muscle, ranging from 27 to 45 ms in both tissues. The times for subcutaneous fat and marrow were longer and more varying, ranging from 41 to 143 ms and from 42 to 160 ms, respectively. In FSE acquisition, relaxation time significantly increases as ETL increases (P<.05). In cartilage, the SE acquisition yields the lowest T2 values (27.52±3.10 ms), which is significantly lower than those obtained from other sequences (P<.002). T2 values obtained from spiral acquisition (38.27±6.45 ms) were higher than those obtained from MESE (34.35±5.62 ms) and SPGR acquisition (31.64±4.53 ms). These differences, however, were not significant (P>.05).

Conclusion

T2 quantification can be a valuable tool for the diagnosis of degenerative disease. Several different sequences exist to quantify the relaxation times of tissues. Sequences range in scan time, SNR efficiency, reproducibility and two- or three-dimensional mapping. However, when choosing a sequence for quantitation, it is important to realize that several factors affect the measured T2 relaxation time.  相似文献   

14.
The aim of this study was to establish whether enhancement of the liver by the MRI contrast agent ferumoxides could be effectively achieved at a reduced dose of 7.5 micromol/kg in patients with advanced liver cirrhosis. Forty-two liver transplant candidates with end-stage cirrhosis underwent SPIO-enhanced MRI at 1.5T, using either 15 micromol/kg or 7.5 micromol/kg ferumoxides. The lower dose of ferumoxides was also used in 21 non-cirrhotic patients with colorectal liver metastases who acted as a control group. The percentage signal intensity loss (PSIL) after SPIO was measured in all patients, and in those patients with tumors the post-SPIO contrast-to-noise ratio (CNR) was measured. The median PSIL after SPIO in the high dose cirrhotic (HDLC), low dose non-cirrhotic (LDNC) and low dose cirrhotic (LDLC) patients was 86.3%, 74.6%, and 64.2% respectively. These differences were significant using the Mann-Whitney U test. Tumors were found in 8 patients in the high dose cirrhotic group, 9 in the low dose cirrhotic group, and all 21 of the control group. No significant differences were found between the CNR values after SPIO in the 3 groups (median values HDLC 15.1, LDNC 23.7, LDLC 19.5). In patients with late-stage cirrhosis the PSIL after SPIO was significantly less at 7.5 micromol/kg than at 15 micromol/kg, but both doses produced a substantial loss of signal. Lesion to liver CNR was not adversely affected by using the lower dose, so when imaging at 1.5T the authors would recommend using 7.5 micromol/kg in patients with liver cirrhosis.  相似文献   

15.
A 48-echo pulse sequence with five different echo-spacing combinations was examined to determine how one can most effectively measure the T2 relaxation characteristics of cerebral tissue containing a long T2 component. For each scan, the first 32 echoes had an echo spacing of 10 ms, while the spacing for Echoes 33-48 (DeltaTE2) was 10, 20, 30, 40 or 50 ms. In an in vivo study using 10 normal volunteers, it was found that the resolution of T2 distribution peaks for both myelin water (approximately 20 ms) and intracellular/extracellular (IE) water (approximately 80 ms) improved as DeltaTE2 increased. The geometric mean T2 values of the main peak agreed within the error for all DeltaTE2 values. A phantom study simulated T2 relaxation distributions that are expected in the brains of patients with demyelinating diseases. For phantoms in which the T2 values of the IE and lesion (200-500 ms) water compartments were separated by at least a factor of 3, each compartment in the distribution was better resolved when DeltaTE2=40 or 50 ms. On the basis of these results, we recommend the use of extended DeltaTE2 values for imaging patients with lesions, without the risk of losing valuable short T2 information.  相似文献   

16.
EPR spectra at 250 MHz for a single crystal of lithium phthalocyanine (LiPc) in the absence of oxygen and for a deoxygenated aqueous solution of a Nycomed triarylmethyl (trityl-CD3) radical were obtained at scan rates between 1.3 x 10(3) and 3.4 x 10(5)G/s. These scan rates are rapid relative to the reciprocals of the electron spin relaxation times (LiPc: T1 = 3.5 micros and T2 = 2.5 micros; trityl: T1 = 12 micros and T2 = 11.5 micros) and cause characteristic oscillations in the direct-detected absorption spectra. For a given scan rate, shorter values of T2 and increased inhomogeneous broadening cause less deep oscillations that damp out more quickly than for longer T2. There is excellent agreement between experimental and calculated lineshapes and signal amplitudes as a function of radiofrequency magnetic field (B1) and scan rate. When B1 is adjusted for maximum signal amplitude as a function of scan rate, signal intensity for constant number of scans is enhanced by up to a factor of three relative to slow scans. The number of scans that can be averaged in a defined period of time is proportional to the scan rate, which further enhances signal amplitude per unit time. Longer relaxation times cause the maximum signal intensity to occur at slower scan rates. These experiments provide the first systematic characterization of direct-detected rapid-scan EPR signals.  相似文献   

17.
The tissue distribution of perfluorooctanoic acid (PFOA), which is known to show unique biological responses, has been visualized in female mice by (19)F magnetic resonance imaging (MRI) incorporated with the recent advances in microimaging technique. The chemical shift selected fast spin-echo method was applied to acquire in vivo (19)F MR images of PFOA. The in vivo T(1) and T(2) relaxation times of PFOA were proven to be extremely short, which were 140 (+/- 20) ms and 6.3 (+/- 2.2) ms, respectively. To acquire the in vivo (19)F MR images of PFOA, it was necessary to optimize the parameters of signal selection and echo train length. The chemical shift selection was effectively performed by using the (19)F NMR signal of CF(3) group of PFOA without the signal overlapping because the chemical shift difference between the CF(3) and neighbor signals reaches to 14 kHz. The most optimal echo train length to obtain (19)F images efficiently was determined so that the maximum echo time (TE) value in the fast spin-echo sequence was comparable to the in vivo T(2) value. By optimizing these parameters, the in vivo (19)F MR image of PFOA was enabled to obtain efficiently in 12 minutes. As a result, the time course of the accumulation of PFOA into the mouse liver was clearly pursued in the (19)F MR images. Thus, it was concluded that the (19)F MRI becomes the effective method toward the future pharmacological and toxicological studies of perfluorocarboxilic acids.  相似文献   

18.
In this communication we present a method for single-slice mapping of ultrashort transverse relaxation times T(2). The RF pulse sequence consists of a spin echo preparation of the magnetization followed by slice-selective ultrashort echo time (UTE) imaging with radial k-space sampling. In order to keep the minimum echo time as small as possible, avoid out-of-slice contamination and signal contamination due to unwanted echoes, the implemented pulse sequence employs a slice-selective 180° RF refocusing pulse and a 4-step phase cycle. The slice overlap of the two slice-selective RF pulses was investigated. An acceptable Gaussian slice profile could be achieved by adjusting the strength of the two slice-selection gradients. The method was tested on a short T(2) phantom consisting of an arrangement of a roll of adhesive tape, an eraser, a piece of modeling dough made of Plasticine?, and a 10% w/w agar gel. The T(2) measurements on the phantom revealed exponential signal decays for all samples with T(2)(adhesive tape)=(0.5 ± 0.1)ms, T(2)(eraser)=(2.33 ± 0.07)ms, T(2)(Plasticine?)=(2.8 ± 0.06)ms, and T(2)(10%agar)=(9.5 ± 0.83)ms. The T(2) values obtained by the mapping method show good agreement with the T(2) values obtained by a non-selective T(2) measurement. For all samples, except the adhesive tape, the effective transverse relaxation time T(2)(?) was significantly shorter than T(2). Depending on the scanner hardware the presented method allows mapping of T(2) down to a few hundreds of microseconds. Besides investigating material samples, the presented method can be used to study the rapidly decaying MR-signal from biological tissue (e.g.: bone, cartilage, and tendon) and quadrupolar nuclei (e.g.: (23)Na, (35)Cl, and (17)O).  相似文献   

19.
Contrast manipulation and artifact assessment of 2D and 3D RARE sequences   总被引:2,自引:0,他引:2  
The extent of contrast manipulation and the assessment of characteristic artifacts in imaging studies of brain and knee as performed with novel variants of the Rapid Acquisition Relaxation Enhanced (RARE) sequence are reported. Methods of ordering the phase encoding within one or two echo trains are proposed for manipulating T2 contrast. Options for minimizing artifacts associated with the various schemes are discussed. The extent of T1 contrast manipulation in RARE sequences is explored by varying repetition rates in a signal averaging scheme and by applying inversion pulses prior to data acquisition. The results demonstrate that RARE sequences can be utilized for obtaining good quality images with a range of tissue contrast options similar to those associated with slower spin-echo methods. They also suggest that RARE applications need not be confined to highlighting long T2 fluid spaces, an application already well documented.  相似文献   

20.
The main objective of this article was (i) to refocus the residual dipolar and quadrupolar interactions in anisotropic tissues employing magic sandwich echo (MSE) imaging and to compare the results with that of conventional spin-echo (SE) imaging, and (ii) to quantify MSE relaxation and dispersion characteristics in bovine Achilles tendon and compare with spin-lattice relaxation time constant in the rotating frame (T(1rho)). Magic sandwich echo weighted images are approximately 75-100% higher in signal-to-noise ratio than the corresponding T(2)-weighted images. Magic sandwich echo relaxation times varied from 13+/-2 to 19+/-3 ms (mean+/-S.D.), depending upon the structural location of tendon. T(2) relaxation times only varied from 4+/-1 to 10+/-3 ms (mean+/-S.D.) on the same corresponding locations. Magic sandwich echo provides approximately 100% enhancement in relaxation times compared to T(2). Preliminary results based on bovine Achilles tendon and cartilage specimens suggest that the MSE technique has potential for refocusing residual dipolar as well as quadrupolar interactions in anisotropic systems and yields higher intensities than conventional SE imaging as well as T(1rho)-encoded imaging, especially at low-burst pulse amplitudes (250 and 500 Hz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号