首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The pathological processes involved in age-related macular degeneration (AMD) include retinal pigment epithelial (RPE) cell degeneration; oxidative mechanisms likely contribute to the demise of these cells. Indeed, RPE cells may be particularly susceptible to photooxidative mechanisms since they accumulate retinoid-derived photoreactive compounds that constitute the lipofuscin of the cell. Thus we undertook to test the capacity of OT-674, the reduction product (Tempol-H) of the nitroxide Tempol, to suppress photooxidative processes initiated by the RPE lipofuscin fluorophore A2E. Accordingly, when ARPE-19 cells that had accumulated A2E were irradiated at 430 nm, pretreatment with OT-674 (0.01-10 mM) was found to confer a resistance to cell death. Monitoring by quantitative HPLC also showed that OT-674 reduced A2E photooxidation in a cell-free system. Moreover, when presented with a singlet oxygen generator, OT-674 served as a quencher of singlet oxygen that was more effective than Trolox and alpha-tocopherol. We conclude that OT-674 is a potent antioxidant that suppresses photooxidative processes generated in cultured RPE cells by the lipofuscin fluorophore A2E. As oxidative damage to RPE cells is considered to be a risk factor for AMD, antioxidant therapy with OT-674 may serve a protective role.  相似文献   

2.
The human retinal pigment epithelial (RPE) layer contains a complex mixture of components called lipofuscin; this mixture forms with age and with various genetic disorders such as Stargardt's disease. Its presence may contribute to retinal deterioration via several mechanisms including photochemical processes. In the lipofuscin mixture, both type I and II mechanisms have been identified, with the latter consisting of the generation of singlet oxygen. Several components of that mixture have been identified, most notably a bis-retinoid pyridinium compound called A2E and its derivatives. Photo-oxidative studies on the compound A2E have revealed that its dominant photochemical mechanism is via free radical or type I processes. Because singlet oxygen is an important photooxidative intermediate in tissue, its generation in the RPE may contribute to retinal maculopathies. It is therefore necessary to determine which specific component(s) in the lipofuscin mixture produce singlet oxygen upon excitation with light. This was ascertained by evaluating the action spectrum for singlet oxygen production for the whole lipofuscin mixture using time-resolved spectroscopy. Singlet oxygen was generated by excitation of the sample at different wavelengths while maintaining a constant beam energy, and was directly detected by its phosphorescence decay at 1270 nm using a Ge photodiode. The action spectrum for singlet oxygen sensitization by the organic soluble portion of lipofuscin had an absorption maximum at ca 380 nm, which is to the blue of A2E (maximum at 430 nm). Compounds with a similar absorption maximum eluted in the HPLC earlier than A2E and were detected in human lipofuscin. The concentration of this component apparently increased in concentration in human RPE lipofuscin mixture as a function of age up to 90 years old.  相似文献   

3.
The damaging effect of lipofuscin granules from the human retinal pigment epithelium and fluorophore A2E was studied on models of calcein- and ascorbate-loaded cardiolipin liposomes and outer segments of the bovine eye photoreceptor cells in dark and under visible light irradiation. In dark fluorophore A2E induces the release of calcein from calcein-loaded liposomes and reduces the lifetime of the artificial bilayer lipid membrane prepared from dioleyl phosphatidilcholine. A similar detergent-like action A2E exhibits towards ascorbate-loaded liposomes, significantly accelerating the release of ascorbate in dark. In the presence of A2E, irradiation with the full visible light (390?C700 nm) stimulates both the release of ascorbate from liposomes and accelerates the destruction of the bilayer lipid membrane. Retinal pigment epithelium lipofuscin granules also accelerate the release of ascorbate from ascorbate-loaded liposomes under visible light irradiation; the blue light (457.9 nm) was twice as more efficient as the green light (514.5 nm). The preliminary irradiation of A2E with the visible light decreases its detergent-like action on the cardiolipin liposomal membranes under the dark conditions and the photosensitizing effect on the lipid peroxidation of the outer segments of photoreceptor cells. Unlike A2E, the visible light irradiation of a suspension of lipofuscin granules under similar conditions does not noticeably decrease their sensitizing activity towards lipid peroxidation. It is assumed that the phototoxicity of retinal pigment epithelium lipofuscin granules is related not only to A2E in their composition, but depends mainly on the content of other photosensitizers (chromophores) in the granules.  相似文献   

4.
The process of sight (photostasis) produces, as a by-product, a chromophore called 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E, 5E,7E-octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E, 3E, 5E-hexatrienyl]-pyridinium (A2E), whose function in the eye has not been defined as yet. In youth and adulthood, A2E is removed from human retinal pigment epithelial (h-RPE) cells as it is made, and so it is present in very low concentrations, but with advanced age, it accumulates to concentrations reaching 20 microM. In the present study we have used photophysical techniques and in vitro cellular measurements to explore the role of A2E in h-RPE cells. We have found that A2E has both pro- and antioxidant properties. It generated singlet oxygen (phiso = 0.004) much less efficiently than its precursor trans-retinal (phiso = 0.24). It also quenched singlet oxygen at a rate (10(8) M(-1) s(-1)) equivalent to two other endogenous quenchers of reactive oxygen species in the eye: alpha-tocopherol (vitamin E) and ascorbic acid (vitamin C). The endogenous singlet oxygen quencher lutein, whose quenching rate is two orders of magnitude greater than that of A2E, completely prevented light damage in vitro, suggesting that singlet oxygen does indeed play a role in light-induced damage to aged human retinas. We have used multiphoton confocal microscopy and the comet assay to measure the toxic, phototoxic and protective capacity of A2E in h-RPE cells. At 1-5 microM, A2E protected these cells from UV-induced breaks in DNA; at 20 microM, A2E no longer exerted this protective effect. These results imply that the role of A2E is not simple and may change over the course of a lifetime. A2E itself may play a protective role in the young eye but a toxic role in older eyes.  相似文献   

5.
The retinal analogues 3-methyl-5-(1-pyryl)-2E,4E-pentadienal (1) and 3,7-dimethyl-9-(1-pyryl)-2E,4E,6E,8E-nonatetr aenal (2), which contain the tetra aromatic pyryl system, have been synthesized and characterized in order to examine the effect of the extended ring system on the binding capabilities and the function of bacteriorhodopsin (bR). The two bR mutants, E194Q and E204Q, known to have distinct proton-pumping patterns, were also examined so that the effect of the bulky ring system on the proton-pumping mechanism could be studied. Both retinals formed pigments with all three bacterioopsins, and these pigments were found to have absorption maxima in the range 498-516 nm. All the analogue pigments showed activity as proton pumps. The pigment formed from wild-type apoprotein bR with 1 (with the shortened polyene side chain) showed an M intermediate at 400 nm and exhibited fast proton release followed by proton uptake. Extending the polyene side chain to the length identical with retinal, analogue 2 with wild-type apoprotein gave a pigment that shows M and O intermediates at 435 nm and 650 nm, respectively. This pigment shows both fast and slow proton release at pH 7, suggesting that the pKa of the proton release group (in the M-state) is higher in this pigment compared to native bR. Hydrogen azide ions were found to accelerate the rise and decay of the O intermediate at neutral pH in pyryl 2 pigment. The pigments formed between 2 and E194Q and E204Q showed proton-pumping behavior similar to pigments formed with the native retinal, suggesting that the size of the chromophore ring does not alter the protein conformation at these sites.  相似文献   

6.
The retinal pigment epithelium (RPE) is a highly metabolic layer of postmitotic cells lining Bruch's membrane in the retina. While these cells contain endogenous photosensitizers that mediate blue light‐induced damage, it has also been shown that blue light exposure damages mitochondrial DNA in RPE cells resulting in mitochondrial dysfunction and unregulated generation of reactive oxygen species (ROS). As RPE cells are postmitotic, it is imperative to decrease oxidative stress to these cells and preserve function. Dietary plant‐derived antioxidants such as anthocyanins offer a simple and accessible solution for decreasing oxidative stress. The anthocyanins malvidin‐3‐O‐glucoside (oenin) and pelargonidin‐3‐O‐glucoside (callistephin) were tested for their ability and efficacy in decreasing ROS generation and preserving mitochondrial redox activity in blue light‐irradiated ARPE‐19 cells. A significant decrease in intracellular ROS with concurrent increase in mitochondrial redox activity was observed for tested concentrations of oenin, while callistephin was beneficial to stressed cells at higher concentrations. These findings suggest anthocyanins are effective antioxidants in blue light‐stressed RPE cells in vitro. Additionally, oxidation products of these anthocyanins were examined using LC/MS and findings suggest the possibility of multiple oxidation sites for these compounds.  相似文献   

7.
Antioxidant properties of melanin in retinal pigment epithelial cells   总被引:7,自引:0,他引:7  
The retinal pigment epithelium (RPE) is a monolayer of highly pigmented cells lining the inner aspect of Bruch's membrane. This pigmentation is due to eumelanin and a possible antioxidant role of melanin is reported here. The photo-oxidation of A2E, a constituent of RPE lipofuscin, leads to the sequential addition of up to nine oxygen atoms and/or the addition or loss of two hydrogen atoms. These photo-oxidations were investigated in the presence and absence of either calf or human RPE melanin in A2E-laden RPE cells. It was found that calf melanin was protective against the photo-oxidation of A2E, with an inhibition of oxidation of up to 50% in the case of the addition of two oxygen atoms. Calf melanin was also protective against blue light-induced damage to RPE cells. In addition this ability appears to decrease in humans as they grow older. With aging, a melanin-lipofuscin complex called melanolipofuscin forms. It is suggested that the oxidation or photo-oxidation of A2E in vivo may contribute to the age-related deterioration of the anti-oxidant role of RPE melanin and lead to various retinal disorders, such as age-related macular degeneration.  相似文献   

8.
Melanin, a major pigment found in retinal pigment epithelium (RPE) cells, is considered to function in dual roles, one protective and one destructive. By quenching free radical species and reactive oxygen species (ROS) melanin counteracts harmful redox stress. However, melanin is also thought to be capable of creating ROS. In this destructive role, melanin increases redox strain in the cell. This study uses readily available eumelanin extracted from porcine RPE cells as a more authentic model than synthetic melanin to determine specific mechanisms of melanin activity with regard to singlet oxygen in the presence and absence of rose bengal, a singlet-oxygen photosensitizer. Optical detection of singlet-oxygen was determined by monitoring the bleaching of p-nitrosodimethylaniline in the presence of histidine. Production of singlet oxygen in aqueous oxygen-saturated solutions of rose bengal without eumelanin was readily accomplished. In contrast, detection of singlet oxygen in oxygen-saturated solutions of eumelanin without rose bengal failed, consistent with results of others. However, a significant decrease in singlet oxygen production by rose bengal was observed in the presence of eumelanin. After correction for light absorption and chemical bleaching of eumelanin, the results show that eumelanin also provides a photoprotective mode arising from chemistry, that is, not just the physical process of light absorption followed by energy dissipation as heat.  相似文献   

9.
With age, human retinal pigment epithelial cells accumulate lipofuscin that can absorb photons in the visible range leading to light-induced damage and impaired vision. A putative precursor of lipofuscin, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E, 5E,7E- octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6-(2,6,6-trimethyl-1 - cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2-E), has recently been isolated and characterized from aged human retinal pigment epithelial cells. We have found that A2-E inhibits the growth of human retinal pigment epithelial cells at concentrations greater than 1 microM. Time-resolved fluorescence measurements of 1 microM A2-E in solution, performed under 413 nm excitation, showed that fluorescence wave forms integrated across the spectrum (450-600 nm) were best-fitted with three decay times in the nanosecond and subnanosecond time scale: 6.6, 1.9 and 0.33 ns. Untreated retinal pigment epithelial cells were characterized by three fluorescence lifetimes: 6.3, 1.7 and 0.35 ns. In retinal pigment epithelial cells treated with 1 microM A2-E, the fluorescence decay was significantly faster, with the marked presence (approximately equal to 30%) of a fourth short lifetime (0.12 ns). These fluorescence decay times for A2-E bound to human retinal pigment epithelial cells are similar to those of lipofuscin granules isolated from aged human retinal pigment epithelial cells. This similarity supports the hypothesis that A2-E is a precursor of lipofuscin and suggests that A2-E may play a role in the overall light damage associated with age-related retinal diseases.  相似文献   

10.
All‐trans‐retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time‐resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration‐dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored.  相似文献   

11.
It has been reported that the photo-oxidation of A2E, a component of human retinal lipofuscin, leads to products that are toxic to cells via dark reactions. Because these compounds have been implicated in the development of various maculopathies such as age-related macular degeneration (AMD), it is important to determine the structures of those deleterious compounds. Both the photo-oxidation and auto-oxidation of A2E lead to the same complex mixture of products, some of which have lower molecular weights than the staring material. Because A2E is homologous to beta-carotene, it was hypothesized that its oxidation would lead to products analogous to those found in oxidized beta-carotene, namely, a series of cleavage products along the acyclic chain with the concomitant formation of aldehydes. This was found to be the case based upon 1) the formation of all of the aldehydes predicted from the oxidation of beta-carotene, 2) the loss of 28 amu (carbonyl moiety) from the molecular ion, 3) the facile reaction of the aldehydes with nitrophenylhydrazines to form nitrophenylhydrazones and 4) the subsequent MS/MS cleavage of those derivatives at the N-N bond. If formed in vivo, these aldehydes would have toxic effects on any cell. Finally, the similarity in product mixtures from both the photo-oxidation and auto-oxidation strongly suggests that the intermolecular photo-oxidation of A2E results primarily from a radical process without the involvement of singlet oxygen. Any formation of singlet oxygen most likely arises from sensitization by the aldehyde oxidation products, as this process is well known for aldehydes, in general, and retinal, specifically.  相似文献   

12.
Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.  相似文献   

13.
The accumulation of lipofuscin granules within the retinal pigment epithelium (RPE) cells is correlated with the progression of age-related macular degeneration. One of the fluorophores contained in lipofiscin granules is pyridinium bis-retinoid (A2E). To test its membrane-toxic effect, the interaction of A2E with bilayer lipid membranes (BLM) was studied. The incorporation of charged A2E molecules into the membranes has been detected as a change of either zeta-potential of multilayer liposomes or boundary potential of BLM. It was shown that the presence of up to 25mol% of A2E did not destabilize the bilayers made of saturated phosphatidylcholine (PC). However, the destabilizing effect became very significant when BLM contained negatively charged lipids such as cardiolipin or phosphatidylserine. The electrical breakdown measurements revealed that the A2E-induced decrease of BLM stability was primarily associated with the growing probability of lipid pore formation. It was found from the measurements of boundary potential of BLM that exposure of A2E to light initiates its transformation into at least two products. One of them is epoxy-A2E, which, being hydrophilic, moves from the membrane into water solution. The other product is a non-identified hydrophobic substance. Illumination of A2E-containing BLM made from unsaturated PC by visible light caused the membrane damage presumably due to oxidation of these lipids by singlet oxygen generated by excited A2E molecules. However, this effect was very weak compared to the effect of known photosensitizers. The illumination of BLM with A2E also leads to the damage of gramicidin incorporated into the membrane, as was detected by measuring the conductance of channels formed by this peptide.  相似文献   

14.
We investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (kT) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-((E)-2-(3,5-dimethoxyphenyl)ethenyl)phenol (pterostilbene), 5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol and (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one (dihydromyricetin). A protic solvent system results in higher kT values, except for the completely methylated derivative. We also investigated the ability of trans-resveratrol to directly act as a photosensitizer (rather than via secondary photoproducts resulting from other primary photochemical reactions) for the production of singlet oxygen but found that neither resveratrol nor any of its derivatives are able to do so. We then studied the chemical reactions of the methylated derivative with singlet oxygen. The main pathway consists of a [4 + 2] cycloaddition reaction involving the trans-double bond and the para-substituted benzene ring similar to what has been observed for trans-resveratrol. Unlike trans-resveratrol, the primary singlet oxygen product undergoes a second [4 + 2] cycloaddition with singlet oxygen leading to the formation of diendoperoxides. A second reactivity pathway for both trans-resveratrol and the methylated derivative leads to the formation of aldehydes via cleavage of a transient dioxetane.  相似文献   

15.
To investigate the effect of a blue light-filtering intraocular lens (IOL) and a UV-absorbing IOL on light-induced damage to retinal pigment epithelial (RPE) cells laden with the lipofuscin fluorophore N -retinylidene- N -retinylethanolamine (A2E), A2E-laden RPE cells were exposed to white light which was filtered by either a blue light-filtering IOL or a UV-absorbing IOL. After 30 min of illumination the cell viability and the level of reactive oxygen species (ROS), free glutathione (GSH), vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) were determined. In the absence of an IOL, the white light exposure decreased cell viability to 37.2% of the nonirradiated control. The UV-absorbing IOL tended to reduce light-induced cell death; however, the decrease was not significant. The blue light-filtering IOL significantly attenuated light-induced cell damage, increasing cell viability to 79.5% of the nonirradiated control. The presence of the blue light-filtering IOL significantly increased GSH and PEDF levels, and decreased ROS and VEGF levels. This study suggests that a blue light-filtering IOL may be more protective against A2E-induced light damage and inhibit more light-induced ROS and VEGF production than a conventional UV-absorbing IOL.  相似文献   

16.
The retina and retinal pigment epithelium contain a number of retinoids in a metabolic pathway that eventually forms the visual pigments. This study investigates the photochemistry of those retinoids that may contribute to light-induced damage to the retina. These include retinal (RAL), retinol (ROL), retinylpalmitate (ROLpal) and the protonated Schiff-base of retinal (RAL.,). Their photochemistry was followed by both EPR spin-trapping techniques and the direct detection of singlet oxygen via its luminescence at 1270 nm. Irradiation (>300 nm) of RAL, ROL in methanol (MeOH) or RALpal in dimeth-ylformamide, produces free radicals from both solvents. Illumination of RAL., in MeOH containing NADH with light above 400 nm (and even above 455 nm) generates the superoxide radical. We also determined that the quantum yields for singlet oxygen sensitization by RAL, ROL or RALpal in MeOH are 0.05, 0.03 and 4.01, respectively. These values are at least 75% less than those previously found using chemical methods. These observations indicate that a major photochemical process for these retinoids may be an electron (or hydrogen) process that will lead to radical products, and that the singlet oxygen mechanism is of relatively minor importance in protic solvents. These results may explain the action spectra obtained from light-induced damage to the retina.  相似文献   

17.
The photochemical and photobiological properties of 4,8-dimethyl-5'-acetylpsoralen (AcPso), proposed for the photochemotherapy of some skin diseases, were investigated. The photoreaction of AcPso with DNA is weaker in the presence of air than in a nitrogen atmosphere, in terms of total photobinding and DNA cross-linking; when UVA irradiation is performed in air, AcPso behaves as a monofunctional reagent. The quenching effect of oxygen is related to the high capacity of AcPso to produce singlet oxygen. Furthermore, it is demonstrated that AcPso photoadducts are better producers of singlet oxygen than free AcPso in solution. Using DNA sequencing methodology, two modes of DNA photosensitization by AcPso are shown, these lead to the formation of photoadducts mainly at T residues (and at C to a lesser extent) and to photo-oxidized G residues probably via singlet oxygen. Chemical or enzymatic cleavage were used as probes in these experiments. A rapid assay for the detection of the photodynamic effect of a photosensitizer on DNA, involving oxygen, is also described. Finally, the cytotoxicity and genotoxicity of AcPso on E. coli WP2 cells appear to be related to its ability to form photoadducts, in particular cross-links, rather than to its capacity to produce singlet oxygen.  相似文献   

18.
The ability of meso-tetrakis- (substituted phenyl) porphine derivatives for photo-generating singlet oxygen (O2) is studied by ESR spectrometry. The results show that the singlet oxygen yields of most of porphine derivatives are higher than that of HPD. It is also exhibited that the nature and structure of the substituent at the meso position are closely related to the photo-sensitizing ability of meso-tetrakis-(substituted phenyl) porphine.  相似文献   

19.
随着肿瘤光动力疗法(Photodynamic Therapy,PDT)的不断发展,出现了一系列新光敏剂,其中,meso-四-(取代苯基)卟吩衍生物是一类肿瘤选择性摄入率高、理化性质稳定的光动力敏化剂,近年来,作者设计并合成了一组meso-四-(取代苯基)卟吩衍生物,并初步观察了它们对细胞及小鼠移植瘤的光动力学效应,为了进一步比较不同卟吩衍生物的光敏化  相似文献   

20.
Lipofuscin is a fluorescent material with significant phototoxic potential that accumulates with age in the retinal pigment epithelium (RPE) of the eye. It is thought to be a factor in retinal degeneration diseases. The most extensively characterized lipofuscin component, N‐retinylidene‐N‐retinylethanolamine (A2E), has been proposed to be a byproduct of reactions involving the visual pigment chromophore. To examine the impact of the visual pigment and photoreceptor cell type on lipofuscin accumulation, we analyzed the RPE from Nrl?/? mice of various ages for lipofuscin fluorescence and A2E levels. The photoreceptor cells of the Nrl?/? retina contain only cone‐like pigments, and produce cone‐like responses to photostimulation. The cone‐like nature of these cells was confirmed by the presence of RPE65. Lipofuscin was measured with fluorescence imaging, whereas A2E was quantified by UV/VIS absorbance spectroscopy coupled to HPLC. The identity of A2E was corroborated with tandem mass spectrometry. Lipofuscin and A2E accumulated with age, albeit to lower levels compared with wild type mice. The emission spectra of RPE lipofuscin granules from Nrl?/? mice were similar to those from wild type mice, with λmaxca 610 nm. These results demonstrate that cone visual pigments can contribute to the production of lipofuscin and A2E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号