首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EPR and magnetic susceptibility experiments have been performed on x(CuO·MnO)(1?x)[2B2O3·K2O] glasses with x varying in the range 0?x?50 mol.%. For x?3 mol.% both Cu2+ and Mn2+ ions are present mostly as the isolated species. The increase of the g-tensor values and bonding parameters (α2, β2, δ2) for Cu2+ ions together with the increase of TM ions concentration in the 0.2–1 mol.% range was noticed. In the case of 5 ? x ? 30 mol.% the dipole-dipole and superexchange interactions occur between transition metal ions, the first type of interactions prevailing in this range of concentration. For x30 mol.% the superexchange interaction prevail. The strong interaction between Cu2+ and Mn2+ gives rise to the exchange coupled Cu2+Mn2+ pairs in the studied glasses with x 3 mol.%.  相似文献   

2.
EPR and optical absorption studies in azurite have been carried out at room and low temperatures. The EPR spectrum reveals that the ground state for Cu2+ ion is 2B1. Peak to peak linewidth of EPR spectrum is calculated (ΔHp = 76 G) and found to be close with the observed value. The Cu2+ ion situated in D4h symmetry with spin-orbit interaction exhibits bands at 11,806, 16,484, 17,952 and 19,793 cm?1. The tetragonal field parameters are calculated to be Ds = ? 3364 cm?1 and Dt = ? 604 cm?1. The crystal field splitting parameter is found to be Dq = ? 1175 cm?1.  相似文献   

3.
EPR spectra of Gd3+-doped Ce2(SO4)3.8H2O and La2(SO4)3.9H2O single crystals have been measured with an X-band spectrometer at room and low temperatures. The absolute signs of spin Hamiltonian parameters have been determined for the La2(SO4)3.9H2O host from intensities of lines at liquid helium temperature; for the Ce2(SO4).8H2O host the lines broaden considerably below 60 K, not permitting the determination of absolute signs of spin Hamiltonian parameters. The data are analysed using a rigourous least-squares procedure, fitting simultaneously all lines obtained for several orientations of the external magnetic field. The zero-field splittings have been computed for both the hosts. The characteristics of EPR spectra of Gd3+ in these hosts are compared with those obtained in other rare-earth trisulphate octahydrate hosts.  相似文献   

4.
X-band room temperature EPR spectra have been recorded for Mn2+ ion doping unannealed (La2O3)0.95(CeO2)0.05 host crystal. The data are analysed using a rigorous least-squares fitting procedure in which a large number of lines characterized by ΔM = ± 1, Δm = 0 transition, obtained for several orientations of the static magnetic field, are simultaneously fitted. Combined with the knowledge of the absolute sign of the hyperfine interaction parameter. A, the hyperfine Hamiltonian parameters A, B, Q as reported in this paper, are given with their correct signs. The information on the linewidth is used to deduce the deviation of the crystal-field axes of different Mn2+ ions from the c axis; on the basis of the model proposed here these deviations are found to be between 0 and 10°.  相似文献   

5.
The X-band EPR spectrum of SrCl2:V has been measured at liquid nitrogen temperature. A signal associated with V2+ in a site of trigonal symmetry is observed. The EPR data have been explained using the spin hamiltonian = μβHg?S + D[S2z ? 13S(SH)] + SA?I, with D ? hv, g = 1.957 ± 0.004, g6 = 1.954 ± 0.004, A = 230 ± 5 MHz, A6 = 235 ± 5 MHz. This V2+ defect is similar to those previously reported in fluoride crystals with the fluorite structure.  相似文献   

6.
Precise measurements of anisotropy of g-value and linewidth of the EPR absorption signal in β-Na0.33V2O5 have revealed the presence of pair formation of magnetic V4+ ions in site-I chains. The anisotropy of the linewidth can be understood on the basis of the pairing model, by considering motions of pairs. The depairing time is estimated as of the order of 10?11 sec.  相似文献   

7.
We used the spin-Hamiltonian method for the analysis of the electron paramagnetic resonance (EPR) spectrum of Fe3+ as a probe ion in (NH4)2AlF5·H2O single crystalline basic material. The theoretical expressions for the magnetic field (at which the fine structure transition lines appear) versus the angle between the magnetic field and the axis of symmetry of the magnetic complex are also given. These values were calculated by applying the perturbation theory to the second-order terms. From the experimental results (at 300 K and 9.21 GHz), the spin-Hamiltonian parameters were deduced:D=(668±10)·10−4 T,E=(−56±10)·10−4 T,a=(−54±10)·10−4 T,F=(30±10)·10−4 T. An isotropic superhyperfine structure was evidenced for the five fluorine ions. The obtained EPR data were used to determine the local symmetry of the Al3+ ion. A good agreement with X-ray diffraction measurements was found.  相似文献   

8.
The magnetic hyperfine interactions of the impurity Sb5+ in Cr2O3 have been examined by the Mössbauer effect of 121Sb.The magnetic field on the nucleus of 121Sb5+ (Cr2O3) measured at 77° K, H(0) = 170 ± 15 koe.The comparison of the results obtained for the impurity 121Sb5+ with those for the 119Sn4+ ions, occuring in the same matrix, suggests the preponderant effect of the decoupling of the electron spins of 5s valency on the values of the internal fields observed for those ions.  相似文献   

9.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

10.
EPR experiments were performed at Q-band and 300 K on Mn2+ doped (CH3)4NCdCl3. Beside the single ion resonance many weak lines could be observed which can be attributed to nearest neighbour pairs of Mn2+ lying along the crystallographic c-axis. The spectra can be described using a Hamiltonian for strongly exchange coupled pairs. The obtained data show that the ionic separation varies in the different spin states. So an additional interaction occurs on the Mn2+ dimer, which can be interpreted as an exchange striction effect.  相似文献   

11.
In this paper we report new results of EPR experiments on orthorhombic Gd3+-M+ complexes (M = Na, K, Rb and Ag) in SrF2. Special attention is payed to the second degree crystal field parameters B02 and B22 and a comparison with earlier results on corresponding complexes in CaF2 and BaF2 is made. We conclude that the main contributions to these crystal field parameters are of electrostatic nature.  相似文献   

12.
The effect of uniaxial stress on the EPR spectrum of Cr5+ in SrTiO3 has been studied. It is concluded that SrTiO3:Cr5+ is a static Jahn-Teller system. The strain-coupling coefficient V2 is found to be 2 × 104 cm?1. Our results show that in the absence of external stress the intensity ratio of the EPR lines, at temperatures below the cubic-to-tetragonal phase transition, is related to the macroscopic strain, present in SrTiO3 at these temperatures.  相似文献   

13.
The results of EPR and magnetic susceptibility studies on xCuO·(1?x)? [2B2O3·Li2O] glasses with 0?x?30 mol %, are reported. The modification of EPR spectra with the increasing of CuO content are explained supposing that these are the result of the superposition of two EPR signals, one showing the hyperfine structure typical for isolated Cu2+ ions and other consisting from a broad line centered at g ~ 2 typical for the clustered Cu2+ ions. The values of the EPR parameters prove that the coordination of isolated Cu2+ -complexes remains approximately the same and show that Cu2+ ions are situated in axially distorted octahedral vicinities. EPR measurements have shown that the Cu2+ ions are present mostly as the isolated species when x?5 mol %. Beside the dipole-dipole coupling between Cu2+ ions, the magnetic measurements suggest that for x>10 mol % superexchange interactions appear, too. From Curie constant is established that in this glass system the copper ions are in Cu2+ and Cu+ valence states. Also, the amounts of the copper ions in bivalent state are determined.  相似文献   

14.
Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4·6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature (~ 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at ~ 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.  相似文献   

15.
魏群  杨子元  王参军  许启明 《物理学报》2007,56(4):2393-2398
提出了解释掺杂离子局域结构畸变的配体平面移动模型,建立了此模型下晶体微观结构与自旋哈密顿参量之间的定量关系.在考虑自旋与自旋、自旋与另一电子轨道和轨道与轨道作用等微小磁相互作用的基础上,采用全组态完全对角化方法,对Al2O3晶体中V3+的局域结构和自旋哈密顿参量进行了系统的研究.结果表明,V3+掺入Al2O3晶体后,上下配体氧平面间距离增大了0.0060 nm.从而成功地解释了Al2O3:V3+晶体的自旋哈密顿参量.在此基础上,研究了三角晶场下3d2离子自旋哈密顿参量的微观起源.研究发现,自旋三重态对自旋哈密顿参量的贡献是主要的,微小磁相互作用对自旋哈密顿参量的贡献只与自旋三重态有关.  相似文献   

16.
Pulsed field experiments up to 450 kOe have been performed on FeSiF6.6H2O. We interpret the data: (i) in terms of spin hamiltonian constants: D = 12.3± 0.2 cm-1 (E = 0.54cm-1 being known from EPR data); (ii) in terms of axial-crystal-field parameters: δλ = orbital trigonal splitting/spin-orbit coupling = 15 ± 2; λ = -100 ± 7cm?1. The magnetic axis is found to deviate from the cristallographie c axis by an angle 1° < θ < 2°. The adiabatic cooling obtained during the pulse is discussed.Similar experiments on Fe0.15Zn0.85SiF6.6H2O and Fe0.30Zn0.70SiF6.6H2O single crystals are reported; in both cases we measure Dg = 6.0 ± 0.1cm-1. Using EPR data, we obtain D = 14.3cm-1, λ ~ ?75cm-1, δ ~ 195cm-1; using Mössbauer data, we obtain D = 15.3cm-1, λ ~ ?88cm-1, δ ~ 185cm-1.  相似文献   

17.
Using the spectroscopically derived crystal field parameters for Yb(C2H5SO4)3. 9H2O and Er3+: YA1G, the temperature dependence of Schottky specific heat, paramagnetic susceptibility, magnetic anisotropy and μeff has been calculated over a temperature range 5–400°K. The hyperfine interaction parameters for 171Yb3+, 173Yb3+ and 167Er3+ systems are also obtained and in turn used to estimate the nuclear specific heat. The nice agreement obtained for susceptibility and specific heat of Yb(C2H5SO4)3. 9H2O at very low temperatures confirms the accuracy of CEF parameters employed and the neglect of exchange interaction. However, for Er3+: YA1G, the CEF parameters are adequate to explain the bulk thermal and magnetic properties but not the g-values.  相似文献   

18.
The paper deals with the spectroscopic and magnetic properties of Fe2+ ions in FeF2. The microscopic spin Hamiltonian theory for Fe2+ in crystalline environments with second-kind orthorhombic symmetry is considered. Explicit formulas for the parameters B0(2)(D),B2(2)(E), gx, gy, gz and, for the first time in the literature, the fourth-order parameters B0(4), B2(4) and B4(4), are derived. Using semi-empirical data for the 5D-term energy levels of Fe2+ ion in FeF2, the pressure dependence of the parameters Bq(k) in the region from 0 to 133 kbar is discussed. The relative role of the fourth-order parameters with respect to the second-order ones is found to increase strongly with pressure (e.g. in the region studied, D increases only by a factor of 3, whereas B0(4) increases by a factor of nearly 20). The magnetocrystalline anisotropy of FeF2; is considered in the strong anisotropy model taking into account the fourth-order spin Hamiltonian terms. The uniaxial anisotropy constants K1 and K2 are derived theoretically and their pressure dependence is discussed quantitatively. The theory and numerical results of this paper are useful with regard to Fe2+ in other isomorphic fluorides, namely: MgF2, ZnF2, VF2 and MnF2. It is found that the fourth-order spin Hamiltonian parameters are accessible to experimental detection from spectroscopic studies on Fe2+ in non-magnetic fluorides and magnetic studies on Fe2+ : MnF2 and FeF2, preferably under high pressure.  相似文献   

19.
New compounds, [Cu3Ln2(ClCH2COO)12(H2O)8]·2H2O with Ln = Nd3+ (I), Sm3+ (II), Pr3+ (III), built up of pentanuclear clusters were synthesized and studied by means of X-ray analysis and electron paramagnetic resonance (EPR). X-ray data show that all compounds are isostructural and the pentanuclear clusteres may be considered as a linear system with alternating Cu(II) and Ln(III) ions: Cu(2)-L1-Ln-L2-Cu(1)-L2-Ln-L2-Cu(2) with L1 and L2 being bridging fragments and Cu(1) and Cu(2) being structurally nonequivalent copper complexes. EPR studies demonstrate that in the temperature range of 100–293 K the signals due to only one type of the copper complexes are observed in the spectra of I–III. AtT<100 K the spectral temperature dependence is nontrivial. AtT<30 K new signals are detected in the spectra of I and II. The temperature dependence of the EPR spectra is interpreted under the assumption that the parameter of the exchange interaction Cu(2)-Ln considerably exceeds the parameter of the interaction Cu(1)-Ln. EPR spectra are calculated for the fragments of five paramagnetic centers in the frames of the model taking into account the nonequivalence of two copper complexes, short longitudinal and transverse paramagnetic relaxation times of the rare-earth ions at room temperature and the change of the relaxation rates when the temperature decreases. The results of the calculations show that it is possible to obtain information about the interactions in the system on the basis of the analysis of the temperature dependence of the EPR spectra of the central copper complex. The parameter of the isotropic part of the exchange interaction between copper and neodymium ions (for the interaction Cu(2)-Nd) is estimated as about 15 cm−1. A considerable rearrangement of the spin states when the temperature changes is found for all complexes.  相似文献   

20.
EPR spectra of VO2+ ions doped in KZnClSO4·3H2O single crystals have been studied at different temperatures. The EPR spectrum shows a well-resolved hyperfine and superhyperfine structure patterns. The angular variation of EPR spectra reveals the presence of more than three magnetic complexes, which correspond to distinct sites of VO2+ ion. From the angular variation EPR data, the spin-Hamiltonian parameters are evaluated and discussed. The optical absorption spectrum studied at room temperature shows bands corresponding to C4v symmetry. From the EPR and optical data, the molecular-orbital bonding coefficient ε2 and β2 are evaluated and discussed. The observed five-line superhyperfine structure has been attributed to four protons (with I=1/2) from the surrounding water molecules of one of the vanadyl sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号