首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work proposes a numerical method to obtain an approximate solution of non-linear weakly singular Fredholm integral equations. The discrete Galerkin method in addition to thin-plate splines established on scattered points is utilized to estimate the solution of these integral equations. The thin-plate splines can be regarded as a type of free shape parameter radial basis functions which create an efficient and stable technique to approximate a function. The discrete Galerkin method for the approximate solution of integral equations results from the numerical integration of all integrals in the method. We utilize a special accurate quadrature formula via the non-uniform composite Gauss-Legendre integration rule and employ it to compute the singular integrals appeared in the scheme. Since the approach does not need any background meshes, it can be identified as a meshless method. Error analysis is also given for the method. Illustrative examples are shown clearly the reliability and efficiency of the new scheme and confirm the theoretical error estimates.  相似文献   

2.
In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is \(\mathcal {O}(\tau ^{3-\alpha })\). Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when \(\beta \rightarrow +\infty \) solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is \(\mathcal {O}(h)\). In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.  相似文献   

3.
In this article, we study effect of numerical integration on Galerkin meshless method (GMM), applied to approximate solutions of elliptic partial differential equations with essential boundary conditions (EBC). It is well‐known that it is difficult to impose the EBC on the standard approximation space used in GMM. We have used the Nitsche's approach, which was introduced in context of finite element method, to impose the EBC. We refer to this approach as the meshless Nitsche's method (MNM). We require that the numerical integration rule satisfies (a) a “discrete Green's identity” on polynomial spaces, and (b) a “conforming condition” involving the additional integration terms introduced by the Nitsche's approach. Based on such numerical integration rules, we have obtained a convergence result for MNM with numerical integration, where the shape functions reproduce polynomials of degree k ≥ 1. Though we have presented the analysis for the nonsymmetric MNM, the analysis could be extended to the symmetric MNM similarly. Numerical results have been presented to illuminate the theoretical results and to demonstrate the efficiency of the algorithms.Copyright © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 265–288, 2014  相似文献   

4.
基于单位分解积分的伽辽金无网格方法研究   总被引:1,自引:0,他引:1  
数值积分是伽辽金无网格方法实施的一个重要环节,提出了一种适合于伽辽金无网格方法的单位分解积分技术.该积分技术建立在有限覆盖和单位分解基础之上,不需要对积分区域进行分解,具有较高的积分精度.并以无单元伽辽金方法为例,详细说明了基于单位分解积分的伽辽金无网格方法的实现过程.这样,在近似函数建立和数值积分过程中都不需要进行网格划分,从而形成一种“真正的”无网格方法.  相似文献   

5.
We investigate an mth-order discrete problem with additional conditions, described by m linearly independent linear functionals. We find the solution to this problem and present a formula and the existence condition of Green??s function if the general solution of a homogeneous equation is known. We obtain a relation between Green??s functions of two nonhomogeneous problems. It allows us to find Green??s function for the same equation, but with different additional conditions. The obtained results are applied to problems with nonlocal boundary conditions.  相似文献   

6.
Numerical integration poses greater challenges in Galerkin meshless methods than finite element methods owing to the non-polynomial feature of meshless shape functions. The reproducing kernel gradient smoothing integration (RKGSI) is one of the optimal numerical integration techniques in Galerkin meshless methods with minimum integration points. In this paper, properties, quadrature rules and the effect of the RKGSI on meshless methods are analyzed. The existence, uniqueness and error estimates of the solution of Galerkin meshless methods under numerical integration with the RKGSI are established. A procedure on how to choose quadrature rules to recover the optimal convergence rate is presented.  相似文献   

7.
In this work, we use He’s variational iteration method (VIM) to find approximate Green’s functions for a vector equation for the electric field with anisotropic dielectric permittivity and magnetic permeability. We present numerical examples which show that an approximate solution of an initial value problem (IVP) for a vector equation can be obtained by using these approximate Green’s functions.  相似文献   

8.
In this paper, a computational scheme is proposed to estimate the solution of one- and two-dimensional Fredholm-Hammerstein integral equations of the second kind. The method approximates the solution using the discrete Galerkin method based on the moving least squares (MLS) approach as a locally weighted least squares polynomial fitting. The discrete Galerkin technique for integral equations results from the numerical integration of all integrals in the system corresponding to the Galerkin method. Since the proposed method is constructed on a set of scattered points, it does not require any background meshes and so we can call it as the meshless local discrete Galerkin method. The implication of the scheme for solving two-dimensional integral equations is independent of the geometry of the domain. The new method is simple, efficient and more flexible for most classes of nonlinear integral equations. The error analysis of the method is provided. The convergence accuracy of the new technique is tested over several Hammerstein integral equations and obtained results confirm the theoretical error estimates.  相似文献   

9.
In this work, we investigate the construction of a new discontinuous Galerkin discrete formulation to approximate the solution of Serre–Green–Naghdi (SGN) equations in the one-dimensional horizontal framework. Such equations describe the time evolution of shallow water free surface flows in the fully nonlinear and weakly dispersive asymptotic approximation regime. A new non-conforming discrete formulation belonging to the family of symmetric interior penalty discontinuous Galerkin methods is introduced to accurately approximate the solutions of the second order elliptic operator occurring in the SGN equations. We show that the corresponding discrete bilinear form enjoys some consistency and coercivity properties, thus ensuring that the corresponding discrete problem is well-posed. The resulting global discrete formulation is then validated through an extended set of benchmarks, including convergence studies and comparisons with data taken from experiments.  相似文献   

10.
Single-step methods for the approximate solution of the Cauchy problem for dynamic systems are discussed. It is shown that a numerical integration algorithm with a high degree of accuracy based on Taylor’s formula can be proposed in the case of quadratic systems. An explicit estimate is given for the remainder. The algorithm is based on N. Chomsky’s generative grammar for the language of terms of Taylor’s formula.  相似文献   

11.
In this paper, we investigate a generalized discrete Green’s function that describes the general least squares solution of every second-order discrete problem with two nonlocal conditions. We develop the problem where the necessary and sufficient existence condition of ordinary discrete Green’s function is not satisfied. Some examples are also presented.  相似文献   

12.
In this paper, we consider mth-order linear discrete problems with m nonlocal conditions. We investigate a generalized Green’s function, describing the minimum norm least squares solution, and present its properties, which resemble properties of an ordinary Green’s function.  相似文献   

13.
利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析。首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet边界条件,并利用无单元Galerkin法离散整数阶微分方程;最后推导该方程无单元Galerkin法的误差估计公式。数值算例证明了该方法的精度和效果。  相似文献   

14.
The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton-Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.  相似文献   

15.
We propose a numerical method for solving large‐scale differential symmetric Stein equations having low‐rank right constant term. Our approach is based on projection the given problem onto a Krylov subspace then solving the low dimensional matrix problem by using an integration method, and the original problem solution is built by using obtained low‐rank approximate solution. Using the extended block Arnoldi process and backward differentiation formula (BDF), we give statements of the approximate solution and corresponding residual. Some numerical results are given to show the efficiency of the proposed method.  相似文献   

16.
关于薄板的无网格局部边界积分方程方法中的友解   总被引:3,自引:1,他引:2  
无网格局部边界积分方程方法是最近发展起来的一种新的数值方法,这种方法综合了伽辽金有限元、边界元和无单元伽辽金法的优点,是一种具有广阔应用前景的、真正的无网格方法.把无网格局部边界积分方程方法应用于求解薄板问题,给出了薄板无网格局部边界积分方程方法所需要的友解及其全部公式.  相似文献   

17.
In this paper, we study effects of numerical integration on Galerkin meshless methods for solving elliptic partial differential equations with Neumann boundary conditions. The shape functions used in the meshless methods reproduce linear polynomials. The numerical integration rules are required to satisfy the so-called zero row sum condition of stiffness matrix, which is also used by Babuška et al. (Int. J. Numer. Methods Eng. 76:1434–1470, 2008). But the analysis presented there relies on a certain property of the approximation space, which is difficult to verify. The analysis in this paper does not require this property. Moreover, the Lagrange multiplier technique was used to handle the pure Neumann condition. We have also identified specific numerical schemes, diagonal elements correction and background mesh integration, that satisfy the zero row sum condition. The numerical experiments are carried out to verify the theoretical results and test the accuracy of the algorithms.  相似文献   

18.
We consider two numerical methods for solving a periodic boundary value problem for a system of differential inclusions, the Galerkin method and the polygon method. To the original problem, we assign a sequence of its discretizations. Conditions under which the existence of solutions of the periodic boundary value problem implies the solvability of its discrete versions are presented. The convergence of the sequence of approximate solutions is analyzed.  相似文献   

19.
This paper is concerned with the numerical solution of parabolic partial differential equations with time-delay. We focus in particular on the delay dependent stability analysis of difference methods that use a non-constrained mesh, i.e., the time step-size is not required to be a submultiple of the delay. We prove that the fully discrete system unconditionally preserves the delay dependent asymptotic stability of the linear test problem under consideration, when the following discretization is used: a variant of the classical second-order central differences to approximate the diffusion operator, a linear interpolation to approximate the delay argument, and, finally, the trapezoidal rule or the second-order backward differentiation formula to discretize the time derivative. We end the paper with some numerical experiments that confirm the theoretical results.  相似文献   

20.
基于无网格自然单元法,建立了求解二维黏弹性力学问题的一条新途径.基于弹性 黏弹性对应原理和Laplace(拉普拉斯)变换技术,首先将黏弹性问题转换成Laplace域内与弹性力学问题相同的形式,然后推导出基于自然单元法分析黏弹性问题的基本公式.作为一种新兴的无网格数值计算方法,自然单元法的实质是一种基于自然邻近插值的Galerkin(伽辽金)法.相对于其他无网格法,自然单元法的形函数具有插值性和支持域各向异性等特点.算例结果证明了所提分析方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号