首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
A comparative study of dipyrido-and dibenzo-substituted 1,4-diazines {dipyrido[f,h]quinoxaline (dpq), dipyrido[a,c]phenazine (dppz), 6,7-dicyanodipyrido[f,h]quinoxaline (dicnq), dibenzo[f,h]quinoxaline, dibenzo[a,c]phenazine, 6,7-dicyanodibenzo[f,h]-quinoxaline}, o-phenantroline (phen), and also of the complexes [Pt(N∧C)(N∧N)]+[(N∧C)? are deproronated forms of 2-phenylpyridine and 2-(2-thienyl)pyridine; (N∧N) is ethylenediamine, phen, dpq, dppz, dicnq] was carried out by the methods of 1H NMR, electronic absorption, and emission spectroscopy and by cyclic voltammetry. It was found that in frozen solutions of [Pt(N∧C)·(N∧N)]+ complexes the photoexcitation energy decay from two lowest in energy electronic excited states has isolated character and is localized on {Pt(N∧C)} and {Pt(N∧N)} metal-complex fragments: (d N∧C * ) and (d phen * ) [(N∧N) = phen, dpq, dicnq)] or (d N∧C * ) and (π-π diaz * ) [(N∧N) = dppz]. Thermal quenching of the luminescence from the (d phen * ) and (π-π diaz * ) states gives rise to luminescence of the complexes in liquid solutions at 293 K only from the (d N∧C * ) state.  相似文献   

2.
A comparative study of [Pd(N?C)(N?N)]+ complexes {(N?C)? are deprotonated forms of 2-phenylpyridine and 2-(2-thienyl)pyridine and (N^N) is 1,10-phenantroline, dipyrido[f,h]quinoxaline, dipyrido[a,c]phenazine or 6,7-dicyanodibenzo[f,h]quinoxaline} was carried out by the methods of 1H NMR, electronic absorption and emission spectroscopy, and cyclic voltammetry. Optical and electrochemical properties of dipyrido-substituted 1,4-diazines are conditioned by the electron transfer involving π* orbitals localized on weakly interacting phenantroline (π*phen) and diazne (π*diaz) components.  相似文献   

3.
The spectroscopic and electrochemical properties of palladium ethylenediamine complexes [Pd(N^N)En]Cl2 with 1,4-diazine derivatives of o-phenanthroline [(N^N) = dipyrido[a,c]phenazine (dppz), dipyrido[f,h]quinoxaline (dpq)] were studied in comparison with those of the free diimine (N^N) ligands, dibenzo-substituted 1,4-diazines [dibenzo[f,h]quinoxaline (dbq), dibenzo[a,c]phenazine (dbpz)], and cyclometallated dichloride [Pd(C^N)(μ-Cl)]2 and ethylenediamine [Pd(C^N)En]Cl complexes derived from dibenzo-substituted 1,4-diazines.  相似文献   

4.
Four luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes appended with an indole moiety [Ir(N∧C)2(N∧N)] (PF6) (HN∧C = 2-phenylpyridine, Hppy; N∧N = 2-(N-(2-(indole-3-acetamido)ethyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC2indole (1a), N∧N = 2-(N-(6-(indole-3-acetamido)hexyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC6indole (1b); HN∧C = 7,8-benzoquinoline, Hbzq, N∧N = dpqC2indole (2a), N∧N = dpqC6indole (2b)) have been synthesized and characterized. Upon irradiation, all the complexes displayed moderately intense and long-lived luminescence under ambient conditions and in 77 K glass. On the basis of the photophysical data, the emission of the complexes has been assigned to an excited state of triplet metal-to-ligand charge-transfer (3MLCT) ((dπ(Ir) → π*(N∧N)) character. Cyclic voltammetric studies revealed indole-based and iridium-based oxidations at ca. +1.10 V and +1.24 V vs. SCE, respectively, and ligand-based reductions at ca. ?1.07 to ?2.29 V vs. SCE. The interactions of the complexes with an indole-binding protein, bovine serum albumin (BSA), have been examined by emission titrations.  相似文献   

5.
Complexes of the type [Ru(bxbg)2(N‐N)]2+, where N‐N denotes 2,2′‐bipyridine (bpy) ( 1 ), 1,10‐phenanthroline (phen) ( 2 ), dipyrido[3,2‐d:2′,3‐f] quinoxaline (dpq) ( 3 ), and dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) ( 4 ), incorporating bis(o‐xylene)bipyridine‐glycoluril (bxbg) as an ancillary “molecular clip” ligand, have been synthesized and characterized. These ruthenium(II) complexes of bis(o‐xylene)bipyridine‐glycoluril self‐associate in water through specific molecular recognition processes to form polycationic arrays. These arrays containing electrostatic binders as well as intercalator ligands at micromolar doses rapidly condense free DNA into globular nanoparticles of various sizes. The DNA condensation induced by these complexes has been investigated by electrophoretic mobility assay, dynamic light scattering, and transmission electron microscopy. The cellular uptake of complex–DNA condensates and the low cytotoxicity of these complexes satisfy the requirements of a gene vector.  相似文献   

6.
A comparative study of complexes [Pd(dphpz)(N∧N)]PF6 [dphpz? is the deprotonated form of 2,3-diphenylpyrazine; (N∧N) is ethylenediamine (En), 2,2′-bipyridine (bpy), o-phenanthroline (phen), dipyrido[a,c]phenazine (dppz), 6,7-dicyanopyrido[f,h]quinoxaline (dicnq)] was made, using 1H NMR, electronic absorption, and emission spectroscopy, and also cyclic voltammetry. Steric interaction of the dphpz? phenyl rings leads to significant proton shielding in the carbanionic moiety of the cyclometallated ligand. Introduction of heterocyclic diimines instead of ethylenediamine decreases the desheilding of the dphpz? protons adjacent to the coordination center. Irrespective of the nature of the N∧N ligands, the cyclopalladated complexes are characterized by specific parameters of photo-and electrostimulated electron transfer processes involving the Pd(dphpz) orbitals, namely, by the long-wave absorption band with λmax 395±6 nm and ε (2.2±1.2) × 103 1 mol?1 cm?1, the vibrationally structured low-temperature (77 K) luminescence resulting from the spinforbidden optical transfer from the excited to the ground state of the complex (energy E 00 19.27±0.07 kK, lifetime τ 160±30 μs), and the one-electron electroreduction wave with E 1?(2.0±0.1)V. For the [Pd(dphpz)·(N∧N)]+ complexes containing diazine derivatives of phenanthroline (dppz, dicnq), the degradation of the photoexcitation energy from two electronically excited states can occur as isolated process with successive transfer of electrons to the π orbitals localized on the remote moieties: [Pd(dphpz)] and diazine fragments of the N∧N ligands.  相似文献   

7.
A series of tricyanoiron(III) complexes with the general formula mer-[FeIII(5-Xsap)(CN)3]2? (X = H, Me, MeO, Cl or Br, sapH2 = N-salicylidene-o-aminophenol) have been synthesized. These complexes were characterized by IR, ESI-MS, UV/Vis, elemental analysis and magnetic measurements. The structures of (PPh4)2[FeIII(sap)(CN)3] and (PPh4)2[FeIII(5-Mesap)(CN)3] have been determined by X-ray crystallography. These low-spin d 5 tricyanoiron(III) complexes are potential building blocks for the construction of molecule-based magnets.  相似文献   

8.
Addition of a bidentate ligand (LL = 1,10-phenanthroline, o-phenylenebis(dimethylarsine)) to solutions of Au(C6F5)X2(tht) (X = Cl, Br; tht = tetrahydrothiophene) leads to potentially five-coordinate gold(III) derivatives. 197Au Mössbauer spectroscopy points, however, to four-coordinate square-planar complexes with a weak penta-coordination in the phen-containing derivatives. The complexes react with AgClO4 to give four-coordinate cationic complexes of the types [Au(C5F5)X(LL)]ClO4 or [Au(C6F5)(PPh3)(LL)](ClO4)2.  相似文献   

9.
A novel ligand dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline (dpoq) and its complexes [Ru(bpy)2(dpoq)]2+ and [Ru(phen)2(dpoq)]2+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, thermal denaturation and viscosity measurements. Results suggest that two Ru(II) complexes bind to DNA via an intercalative mode.  相似文献   

10.
A series of new ruthenium(II) complexes containing 1,3-dihydro-1,1,3,3-tetramethyl-7,8-diazacyclopenta[1]phenanthren-2-one (DTDP) ligand, such as [Ru(DTDP)n(L)3−n]2+ (L = 2,2′-bipyridyl (bpy), 4,4′-dimethyl-2,2′-bipyridyl (dmbpy), o-phenanthroline (o-phen), 5-chloro-o-phenanthroline (o-phen-Cl), 2,2′-bipyridine-4,4′-dicarboxaldehyde (bpy-(CHO)2), n = 1, 2, 3) were synthesized and examined as ECL materials. All the complexes were characterized in terms of electrochemical redox potential and relative ECL intensity, and were compared to the well-known tris(o-phenanthroline) ruthenium(II) complex. Most of the synthesized Ru(II) complexes containing the DTDP ligand exhibited more intense ECL emissions than [Ru(o-phen)3]2+. In particular, the ECL intensities of [Ru(DTDP)(o-phen)2]2+ and [Ru(DTDP)(bpy-(CHO)2)2]2+ were observed to be as high as 9-fold and 20-fold greater, respectively, than the ECL intensity of [Ru(o-phen)3]2+.  相似文献   

11.
The composition, structure, and properties of a series of Au(III) complexes with heterocyclic diimine ligands [Au(N^N)Cl2]+, where (N^N) = 2,2′-bipyridine (Bipy), 4,4′-dimethyl-2,2′-bipyridine (DmBipy), 2,2′-biquinoline (Bqx), 1,10-phenanthroline (Phen), 2,9-dimethyl-1,10-phenanthroline (DmPhen), and 4,7-diphenyl-1,10-phenanthroline (DphPhen), were characterized by 1H NMR, electronic absorption, and emission spectroscopy and also by cyclic voltammetry. The influence of donor and acceptor substituents on the spectroscopic and electrochemical properties of the Au(III) complexes was revealed.  相似文献   

12.
This study characterizes the supramolecular synthons that dominate the intermolecular organization of the title compounds, namely dichloridobis(dipyrido[f,h]quinoxaline‐6,7‐dicarbonitrile)zinc(II), [ZnCl2(C16H6N6)2], (I), and tetrachlorido(dipyrido[f,h]quinoxaline‐6,7‐dicarbonitrile)tin(IV), [SnCl4(C16H6N6)], (II), in their respective crystal structures. Molecules of (I) are located on 2b axes of rotational symmetry. Their crystal packing is stabilized mostly by π–π stacking and dipole–dipole attractions between the organic ligand fragments of inversion‐related neighbouring species, as well as by weak intermolecular C—H...N hydrogen bonds. On the other hand, Cl...π and N...π interactions seem to direct the crystal packing in (II), which is unusual in the sense that its aromatic fragments are not involved in π–π stacking. Molecules of (II) are located on mb planes of mirror symmetry. This study confirms the diverse structural chemistry of this organic ligand, which can be involved in a wide range of supramolecular interactions. These include effective coordination to various metal ions via the phenathroline N‐atom sites, π–π stacking and π...halogen contacts through its extended π‐system, and hydrogen bonding and N...π interactions through its nitrile groups. The competing natures of the latter make it difficult to predict a priori the preferred supramolecular motif that may form in a given structure.  相似文献   

13.
Two Mn(II) sulfoterephthalate complexes, [Mn(HStp)(o-Phen)2] (I) and [Mn(HStp)(2,2′-Bipy)2] (II) (H3Stp = 2-sulfoterephthalic acid, o-Phen = 1,10-phenanthroline, 2,2′-Bipy = 2,2′-bipyridine), were synthesized under hydrothermal condition. Single crystal X-ray diffraction analyses reveal that complexes I and II possess similar structure, in which the center Mn2+ ions are hexa-coordinated with one Hstpanion and two N-donor ligands. For both of them, the formation of 3D supramolecular structures are based on both H-bonds and π...π/C-H...π stacking interactions. Electrochemical properties of complexes I and II have been investigated by means of cyclic voltmetry, which shows that electron transfer between Mn(III) and Mn(II) in electrolysis is quasi-reversible process.  相似文献   

14.
The reaction of gold(III) neutral complexes AuBr(CN)2(N–N) {N–N = 2,2′-bipyridine (bpy), 5,5′-dimethyl-2,2′-bipyridine (Me2bpy), 1,10-phenanthroline (phen)} with a stoichiometric amount of K[AuCl4] · 2H2O in nitromethane at room temperature led to the formation of 1:1 electrolytes which were characterized by NMR and IR spectroscopy, conductivity measurements, elemental analyses and X-ray diffraction. Both the anions and the cations of these salts are singly charged square-planar Au(III) complexes and the cations have general formula [AuCl2(N–N)]+. A hypothesis on the possible reaction mechanisms is presented to give an explanation for the formation of the reaction products.  相似文献   

15.
Detailed magnetic susceptibility measurements on the polycrystalline complexes [Fe(phen)2(NCS)2] (phen = 1.10-phenanthroline) and [Fe(bipy)2(NCS)2] (bipy = 2,2′-bipyridine) have revealed a narrow hysteresis in both systems indicative of a first-order nature of the spin transition 5T2g(Oh) ? 1 Atg(Oh). The crystal quality, in particular crystal defects (through preparation or grinding), have been shown to influence strongly the spin transition behaviour.  相似文献   

16.
A series of binuclear ruthenium(II)–polypyridyl complexes of the type [Ru2(N‐N)4(BPIMBp)]4+, in which N‐N is 2,2′‐bipyridine (bpy; 1 ), 1,10‐phenanthroline (phen; 2 ), dipyrido[3,2‐d:2′,3‐f] quinoxaline (dpq; 3 ), dipyrido[3,2‐a:2′,3′‐c] phenanzine (dppz; 4 ), and 1,4′‐bis[(2‐pyridin‐2‐yl)‐1H‐imidazol‐1‐yl)methyl]‐1,1′‐biphenyl (BPIMBp) is a bridging ligand, have been synthesized and characterized. These complexes are charged (4+) cations and flexible due to the ?CH2 group of the bridging ligand and possess terminal ligands with variable intercalative abilities. The interaction of complexes 1 – 4 with calf thymus DNA (CT‐DNA) was explored by using UV/Vis absorption spectroscopy, steady‐state emission, emission quenching with K4[Fe(CN)6], ethidium bromide displacement assay, Hoechst displacement assay, and viscosity measurements and revealed a groove‐binding mode for all the complexes through a spacer and an intercalative mode for complexes 3 and 4 . A decrease in the viscosity of DNA revealed bending and coiling of DNA, an initial step toward aggregation. Interestingly, a distinctive honeycomb‐like ordered assembly of the DNA–complex species was visualized by fluorescence microscopy in the solution state. The use of SEM and AFM confirmed the disordered self‐organization of the DNA–complex adduct on evaporation of the solvent. The small orderly nanosized DNA aggregates were confirmed by means of circular dichroism, dynamic light scattering (DLS), and TEM. These complexes are moderately cytotoxic against three different cell lines, namely, MCF‐7, HeLa, and HL‐60.  相似文献   

17.
Single-component molecular conductors [M(tmdt)2] (tmdt = trimethylenetetrathiafulvalenedithiolate; M = Ni, Au, Pt, Cu), exhibit a variety of electromagnetic properties, which originate from the differences of the metal’s d-orbitals role in the band structure formation. The [Au(tmdt)2] crystal undergoes an antiferromagnetic transition at 110 K, while maintaining a metallic state at lower temperatures. The Au analog has a high magnetic transition temperature as compared to traditional magnetic molecular conductors due to the strong three-dimensional (3-D) structure and the contribution of the metal d-orbitals. The single-component molecular conductor, [Cu(tmdt)2], with π- and d-like frontier orbitals is isostructural with other metallic [M(tmdt)2] systems (M = Ni, Pt, Au). The Cu(tmdt)2 molecule is planar, which strikingly contrasts the tetrahedral coordination of Cu(dmdt)2 (dmdt = dimethyltetrathiafulvalenedithiolate) with similarly extended TTF type ligands. Interestingly, unlike other [M(tmdt)2] with metallic behavior, [Cu(tmdt)2] shows semiconducting behavior at room temperature (σ(RT) = ∼7 S cm−1). The RT conductivity increased linearly with increased pressure to 110 S cm−1 at 15 kbar despite the compressed pellet sample. The magnetic susceptibility indicates one-dimensional (1-D) Heisenberg behavior with J = 117 cm−1 and shows antiferromagnetic ordering at 13 K. The [Cu(tmdt)2] is a new multi-frontier π-d system, which introduces a d(σ)-type frontier orbital around the Fermi level of the π-like metal bands.  相似文献   

18.
The development of novel iridium(III) complexes has continued as an important area of research owing to their highly tunable photophysical properties and versatile applications. In this report, three heteroleptic dimesitylboron‐containing iridium(III) complexes, [Ir(p‐B‐ppy)2(N^N)]+ {p‐B‐ppy=2‐(4‐dimesitylborylphenyl)pyridine; N^N=dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) ( 1 ), dipyrido[3,2‐d:2′,3′‐f]quinoxaline (dpq) ( 2 ), and 1,10‐phenanthroline (phen) ( 3 )}, were prepared and fully characterized electrochemically, photophysically, and computationally. Altering the conjugated length of the N^N ligands allowed us to tailor the photophysical properties of these complexes, especially their luminescence wavelength, which could be adjusted from λ=583 to 631 nm in CH2Cl2. All three complexes were evaluated as visible‐light‐absorbing sensitizers for the photogeneration of hydrogen from water and as photocatalysts for the photopolymerization of methyl methacrylate. The results showed that all of them were active in both photochemical reactions. High activity for the photosensitizer (over 1158 turnover numbers with 1 ) was observed, and the system generated hydrogen even after 20 h. Additionally, poly(methyl methacrylate) with a relatively narrow molecular‐weight distribution was obtained if an initiator (i.e., ethyl α‐bromophenylacetate) was used. The living character of the photoinduced polymerization was confirmed on the basis of successful chain‐extension experiments.  相似文献   

19.
The new complexes [Mn(Hpchce)2(o-phen)], {2[Mn(pchcm)(o-phen)2]}·7H2O and [Ni(Hpchcm)(o-phen)2]Cl·CH3OH with [N′-(pyridine-4-carbonyl)-hydrazine]-carbodithioic acid ethyl ester (H2pchce) and [N′-(pyridine-4-carbonyl)-hydrazine]-carbodithioic acid methyl ester (H2pchcm) have been synthesized, containing o-phenanthroline (o-phen) as a coligand. These ligands and their complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. H2pchce (2), [Mn(Hpchce)2(o-phen)] (3) {2[Mn(pchcm)(o-phen)2]}·7H2O (4) and [Ni(Hpchcm)(o-phen)2]Cl·CH3OH (5) crystallized in the monoclinic system, space group Pc, C2/c, P21/n and P21/n, respectively. The (N, O) donor sites of the bidentate ligands chelate the Mn(II) and Ni(II) centers forming a five-membered CN2OM ring. The resulting complexes are paramagnetic and have a distorted octahedral geometry.  相似文献   

20.
cis-C,C Isomers of the [M(ptpy)2(L∧L)](PF6)Z complexes [M = Rh(III), Ir(III), Pt(IV); ptpy? = deprotonated form of 2-(n-tolyl)pyridine, (L∧L) = acetate, trifluoroacetate, or diethyldithiocarbamate anions, or ethylenediamine; z = 0, 1, 2] were prepared and characterized by 1H and 19F NMR, IR, electronic absorption and emissions spectroscopy, and by voltammetry methods. The highest occupied and the lowest unoccupied molecular orbitals were assigned to d π and π*ptpy orbitals of the metal and the metallated ligand. Luminescence of the complexes in the visible spectral region was assigned to the spin-forbidden optical transition from the lowest energy state of the mixed nature (πptpy-π*ptpy/d x -π*ptpy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号