首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the generation and characterization of a new high-spin iron(IV)-oxo complex supported by a trigonal nonheme pyrrolide platform. Oxygen-atom transfer to [(tpa(Mes))Fe(II)](-) (tpa(Ar) = tris(5-arylpyrrol-2-ylmethyl)amine) in acetonitrile solution affords the Fe(III)-alkoxide product [(tpa(Mes2MesO))Fe(III)](-) resulting from intramolecular C-H oxidation with no observable ferryl intermediates. In contrast, treatment of the phenyl derivative [(tpa(Ph))Fe(II)](-) with trimethylamine N-oxide in acetonitrile solution produces the iron(IV)-oxo complex [(tpa(Ph))Fe(IV)(O)](-) that has been characterized by a suite of techniques, including mass spectrometry as well as UV-vis, FTIR, M?ssbauer, XAS, and parallel-mode EPR spectroscopies. Mass spectral, FTIR, and optical absorption studies provide signatures for the iron-oxo chromophore, and M?ssbauer and XAS measurements establish the presence of an Fe(IV) center. Moreover, the Fe(IV)-oxo species gives parallel-mode EPR features indicative of a high-spin, S = 2 system. Preliminary reactivity studies show that the high-spin ferryl tpa(Ph) complex is capable of mediating intermolecular C-H oxidation as well as oxygen-atom transfer chemistry.  相似文献   

2.
N-bridged diiron tetra-tert-butylphthalocyanine activates H(2)O(2) to form anionic hydroperoxo complex [(Pc)Fe(IV)=N-Fe(III)(Pc)-OOH](-) prone to heterolytic cleavage of O-O bond with the release of OH(-) and formation of neutral diiron oxo phthalocyanine cation radical complex, PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. ESI-MS data showed stability of the Fe-N-Fe binuclear structure upon formation of this species, capable of oxidizing methane and benzene via O-atom transfer. The slow formation kinetics and the high reactivity preclude direct detection of this oxo complex by low temperature UV-vis spectroscopy. However, strong oxidizing properties and the results of EPR study support the formation of PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. Addition of H(2)O(2) at -80 °C led to the disappearance of iron EPR signal and to the appearance of the narrow signal at g = 2.001 consistent with the transient formation of PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. In the course of this study, another high valent diiron species was prepared in the solid state with 70% yield. The M?ssbauer spectrum shows two quadrupole doublets with δ(1) = -0.14 mm s(-1), ΔE(Q1) = 1.57 mm s(-1) and δ(2) = -0.10 mm s(-1), ΔE(Q2) = 2.03 mm s(-1), respectively. The negative δ values are consistent with formation of Fe(iv) states. Fe K-edge EXAFS spectroscopy reveals conservation of the diiron Fe-N-Fe core. In XANES, an intense 1s → 3d pre-edge feature at 7114.4 eV suggests formation of Fe(iv) species and attaching of one oxygen atom per two Fe atoms at the 1.90 ? distance. On the basis of M?ssbauer, EPR, EXAFS and XANES data this species was tentatively assigned as (Pc)Fe(IV)=N-Fe(IV)(Pc)-OH which could be formed from PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O by hydrogen atom abstraction from a solvent molecule. Thus, despite unfavourable kinetics, we succeeded in the preparation of the first dirion(iv) phthalocyanine complex with oxygen ligand, generated in the (Pc)Fe(IV)=N-Fe(III)(Pc) - H(2)O(2) system capable of oxidizing methane.  相似文献   

3.
A [(P)Fe(III)-Mn(II)] bimetallic complex, mimicking the active site of manganese peroxidase, has been synthesized. A modified highly fluorinated porphyrin, 5,10,15-tris(pentafluorophenyl)-20-(o-aminophenyl)porphyrin, has been used to introduce, through a short spacer linked to the amino function, a manganese auxiliary ligand, 6-aminomethyl-2,2'-bipyridine. Two successive metalations by FeCl(2) and MnCl(2) afforded the [(P)Fe(III)-Mn(II)] bimetallic complex that has been characterized by elemental analysis and FAB(+) mass spectrometry. X-band EPR spectroscopy and magnetic susceptibility measurements were in agreement with two high spin Fe(III) and Mn(II) centers without magnetic exchange interaction. Moreover, there is no higher intermolecular association through &mgr;-chloro bridging as observed by EPR with a simpler chloromanganese complex, Mn(bipy)(2)Cl(2), at high concentration. Addition of pentafluoroiodosobenzene in methanol at 0 degrees C led to the progressive and complete disappearance of the EPR Mn(II) signals, that were recovered after addition of a phenol. This result is consistent with Mn(III) formation. This production of Mn(III) requires the presence of the iron porphyrin and is proposed to occur through the intermediate formation of a Fe(IV) dimethoxide species which can be related to the oxidation of Mn(II) catalyzed by manganese peroxidase compound II.  相似文献   

4.
Two Mn(II) complexes are isolated and X-ray characterized, namely, cis-[(L(2))Mn(II)(Cl)(2)] (1) and [(L(3))Mn(II)Cl(OH(2))](ClO(4)) (2(ClO(4))), where L(2) and L(3) are the well-known tetradentate N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine and N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)propane-1,3-diamine ligands, respectively. The crystal structure reveals that whereas the ligand L(2) is in the cis-alpha conformation in complex 1, the ligand L(3) is in the more unusual cis-beta conformation in 2. EPR spectra are recorded on frozen solutions for both complexes and are characteristic of Mn(II) species. Electrochemical behaviors are investigated on acetonitrile solution for both complexes and show that cation 2 exists as closely related Mn(II) species in equilibrium. For both complexes exhaustive bulk electrolyses of acetonitrile solution are performed at oxidative potential in various experimental conditions. In the presence of 2,6-lutidine and after elimination of chloride ligands, the formation of the di-mu-oxo mixed-valent complexes [(L(2))Mn(III)(mu-O)(2)Mn(IV)(L(2))](3+) (3a) and [(L(3))Mn(III)(mu-O)(2)Mn(IV)(L(3))](3+) (4) is confirmed by UV-vis and EPR spectroscopies and cyclic voltammetry. In addition crystals of 4(ClO(4))(3) were isolated, and the X-ray structure reveals the cis-alphaconformation of L(3). In the absence of 2,6-lutidine and without elimination of the exogenous chloride ions, the electrochemical oxidation of 1 leads to the formation of the mononuclear Mn(III) complex, namely, [(L(2))Mn(III)(Cl)(2)](+) (5), as confirmed by UV-vis as well as parallel mode EPR spectroscopy and cyclic voltammetry. In the same conditions, the electrochemical oxidation of complex 2 is more intricate, and a thorough analysis of EPR spectra establishes the formation of the binuclear mono-mu-oxo mixed-valent [(L(3))ClMn(III)(mu-O)Mn(IV)Cl(L(3))](3+) (6) complexes. Electrochemical conversion of Mn(II) complexes into mixed-valent Mn(2)(III,IV) oxo-bridged complexes in the presence of 2,6-lutidine is discussed. The role of the chloride ligands as well as that of L(3) in the building of oxo bridges is discussed. Differences in behavior between L(2) and L(3) are commented on.  相似文献   

5.
The dinuclear phenolato-bridged complex [(mL)Mn(II)Mn(II)(mL)](ClO(4))(2) (1(ClO(4))(2)) has been obtained with the new [N(4)O] pentadentate ligand mL(-) (mLH=N,N'-bis-(2-pyridylmethyl)-N-(2-hydroxybenzyl)-N'-methyl-ethane-1,2-diamine) and has been characterised by X-ray crystallography. X- and Q-band EPR spectra were recorded and their variation with temperature was examined. All spectra exhibit features extending over 0-800 mT at the X band and over 100-1450 mT at the Q band, features that are usually observed for dinuclear Mn(II) complexes. Cyclic voltammetry of 1 exhibits two irreversible oxidation waves at E(1)(p)=0.89 V and E(2)(p)=1.02 V, accompanied on the reverse scan by an ill-defined cathodic wave at E(1')(p)=0.56 V (all measured versus the saturated calomel electrode (SCE)). Upon chemical oxidation with tBuOOH (10 equiv) at 20 degrees C, 1 is transformed into the mono-mu-oxo species [(mL)Mn(III)-(mu-O)-Mn(III)(mL)](2+) (2), which eventually partially evolves into the di-mu-oxo species [(mL)Mn(III)-(mu-O)(2)-Mn(IV)(mL)](n+) (3) in which one of the aromatic rings of the ligand is decoordinated. The UV/Vis spectrum of 2 displays a large absorption band at 507 nm, which is attributed to a phenolate-->Mn(III) charge-transfer transition. The cyclovoltammogram of 2 exhibits two reversible oxidation waves, at 0.65 and 1.16 V versus the SCE, corresponding to the Mn(III)Mn(III)/Mn(III)Mn(IV) and Mn(III)Mn(IV)/Mn(IV)Mn(IV) oxidation processes, respectively. The one-electron electrochemical oxidation of 2 leads to the mono-mu-oxo mixed-valent species [(mL)Mn(III)-(mu-O)-Mn(IV)(mL)](3+) (2 ox). The UV/Vis spectrum of 2 ox exhibits one large band at 643 nm, which is attributed to the phenolate-->Mn(IV) charge-transfer transition. 2 ox can also be obtained by the direct electrochemical oxidation of 1 in the presence of an external base. The 2 ox and 3 species exhibit a 16-line EPR signal with first peak to last trough widths of 125 and 111 mT, respectively. Both spectra have been simulated by using colinear rhombic Mn-hyperfine tensors. Mechanisms for the chemical formation of 2 and the electrochemical oxidation of 1 into 2 ox are proposed.  相似文献   

6.
The molecular structure of the formal iron(IV) porphyrinate derivative, [[Fe(TTP)]2N]SbCl6 (TTP = tetratolylporphyrinate), is reported. The structural parameters are compared to the previously reported species [Fe(TPP)]2N, in which the iron oxidation state is +3.5. Both the equatorial and axial bond distances in [[Fe(TTP)]2N]SbCl6 are slightly shortened and consistent with an increased formal charge on iron. The value for the axial Fe-N distance is 1.6280(7) A, and the average value of the equatorial Fe-Np distances is 1.979(5) A. The M?ssbauer isomer shift decreases upon oxidation, again consistent with an increase in formal charge. Values for the isomer shift at room temperature are -0.13 mm/s for [[Fe(TTP)]2N]SbCl6 and 0.04 mm/s for [Fe(TTP)]2N. Crystal data for [[Fe(TTP)]2N]SbCl6 are as follows: orthorhombic, space group Fddd, Z = 8, a = 23.689(2) A, b = 31.056(3) A, c = 22.7788(18) A.  相似文献   

7.
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (?)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.  相似文献   

8.
(R-DAB)FeI(2) complexes containing bidentate diimide ligands (R-DAB = RN=CH-CH=NR; R = (i)Pr, c-C(6)H(11)) have been investigated for their ability to react with carbon monoxide to form iron(II) dicarbonyl complexes, (R-DAB)FeI(2)(CO)(2). Solution IR spectroscopy revealed two νCO stretches between 2000 and 2040 cm(-1) corresponding to a cis-arrangement of the carbonyl ligands around the iron. Photochemical decarbonylation was achieved by UV irradiation (365 nm), which occurred within 5 min as evidenced by solution IR spectroscopy. (c-C(6)H(11)-DAB)FeI(2) has been characterised by X-ray crystallography. Reactions using (11)C-labelled carbon monoxide were investigated and revealed that both (R-DAB)FeI(2) species were not effective as trapping complexes due to the low concentrations of [(11)C]CO used in these experiments. A Fe(TPP)(THF)(x) (TPP = tetraphenylporphyrin) complex was investigated with unlabelled CO and the monocarbonyl adduct Fe(TPP)(THF)CO was formed in situ as identified by IR spectroscopy (νCO = 1966 cm(-1)) yet was stable to CO loss upon UV irradiation. Carbonylation reactions of in situ-generated Fe(TPP)(THF)(x) using [(11)C]CO revealed that 97% of the [(11)C]CO stream could be trapped in one pass of the gas at room temperature and at atmospheric pressure.  相似文献   

9.
The cyanogel system involving PdCl(4)(2-) and the mixed-valence complex [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-) is reported. The system has been characterized by UV-vis absorption, diffuse reflectance infrared, and resonance Raman spectroscopies. Gelation occurs through coordination of Pd(II) to the nitrogen atom of terminal cyanide ligands in the mixed-valence complex. Irradiation into the Fe(II) --> Pt(IV) intervalent electron transfer (IT) band of [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-) results in the formation of a variety of Prussian-blue-like species within the rigid cyanogel matrix. Photochemical and dark mechanisms involving coupled cyanide loss and Fe(II) oxidation are proposed for the formation of Prussian-blue-like species. The optical contrast between irradiated and nonirradiated regions of the gel enables photochemical image generation with at least 12 microm resolution. This capability is demonstrated through the production of a series of diffraction gratings in cyanogel samples.  相似文献   

10.
Treatment of Si(TPP)Cl2 (TPP = tetraphenylporphyrinato) with 2 equiv of Na/Hg in THF yields the reduced porphyrin complex, Si(TPP)(THF)2, in which the porphyrin ring system has an oxidation state of 4- and the complex is antiaromatic. Single-crystal X-ray diffraction reveals that Si(TPP)(THF)2 is highly ruffled and exhibits a unique C-C bond length alternation around its periphery. In addition, experimental 1H and 29Si NMR chemical shifts and NICS (nucleus-independent chemical shift) calculations on a model compound indicate a strong paratropic ring current in Si(TPP).  相似文献   

11.
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.  相似文献   

12.
Treatment of GeCl2(dioxane) with Li2(TPP)(OEt2)2 (TPP = tetraphenylporphyrin) in THF yields Ge(TPP), the first free Ge(II) porphyrin complex. In pyridine Ge(TPP) is converted to Ge(TPP)(py)2, an antiaromatic Ge(IV) complex, whereas in benzene the reaction is reversed, and pyridine dissociates from Ge(TPP)(py)2 to form Ge(TPP). That reversible reaction represents an unusual, if not unique, example of an oxidation-state change in a metal induced by coordination of a dative ligand. UV-vis and 1H NMR spectroscopy show that Ge(TPP) is an aromatic Ge(II) porphyrin complex, while the 1H NMR spectrum of Ge(TPP)(py)2 clearly indicates the presence of a strong paratropic ring current, characteristic of an antiaromatic compound. Both Ge(TPP) and Ge(TPP)(py)2 have been crystallographically characterized, and the antiaromaticity of Ge(TPP)(py)2 leads to alternating short and long C-C bonds along the 20-carbon periphery of its porphine ring system. Coordination of pyridine to Ge(TPP) greatly increases its reducing ability: the Ge(TPP)0/2+ redox potential is about +0.2 V, while the Ge(TPP)(py)2(0/+) redox potential is -1.24 V (both vs. ferrocene). The equilibrium constant of the reaction Ge(TPP) + 2 py = Ge(TPP)(py)2 in C6D6 is 22 M-2. The germanium complex of the more electron-withdrawing tetrakis[3,5-bis(trifluoromethyl)phenyl]porphyrin, Ge(TArFP), and its pyridine adduct Ge(TArFP)(py)2 were synthesized. The equilibrium constant of the reaction Ge(TArFP) + 2 py = Ge(TArFP)(py)2 in C6F6/C6D6 is 2.3 x 10(4) M-2. Density functional theory calculations are consistent with the experimental observation that M(TPP)(py)2 formation from M(TPP) and pyridine is most favorable for M=Si, borderline for Ge, and unfavorable for Sn.  相似文献   

13.
In the further development and understanding of heme-copper O2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) approximately 20 min; lambda max = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {nu(O-O) = 808 cm-1; Delta16O2/18O2 = 46 cm-1; Delta16O2/16/18O2 = 23 cm-1}. Consistent with a mu-eta2:eta1 bridging peroxide ligand, two metal-O stretching frequencies are observed {nu(Fe-O) = 533 cm-1, nu(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also muB = 5.1 +/- 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized mu-oxo complex [(F8TPP)FeIII-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). M?ssbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; delta = 0.57 mm/s, |DeltaEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and M?ssbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2-) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of mu-peroxo complex 3 yields mu-oxo complex 4 with concomitant release of approximately 0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 --> 2 --> 3 --> 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.  相似文献   

14.
The geometric and electronic structure of the untethered heme-peroxo-copper model complex [(F(8)TPP)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](ClO(4)) (1) has been investigated using Cu and Fe K-edge EXAFS spectroscopy and density functional theory calculations in order to describe its geometric and electronic structure. The Fe and Cu K-edge EXAFS data were fit with a Cu...Fe distance of approximately 3.72 A. Spin-unrestricted DFT calculations for the S(T) = 2 spin state were performed on [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) as a model of 1. The peroxo unit is bound end-on to the copper, and side-on to the high-spin iron, for an overall mu-eta(1):eta(2) coordination mode. The calculated Cu...Fe distance is approximately 0.3 A longer than that observed experimentally. Reoptimization of [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) with a 3.7 A Cu...Fe constrained distance results in a similar energy and structure that retains the overall mu-eta(1):eta(2)-peroxo coordination mode. The primary bonding interaction between the copper and the peroxide involves electron donation into the half-occupied Cu d(z)2 orbital from the peroxide pi(sigma) orbital. In the case of the Fe(III)-peroxide eta(2) bond, the two major components arise from the donor interactions of the peroxide pi*(sigma) and pi*(v) orbitals with the Fe d(xz) and d(xy) orbitals, which give rise to sigma and delta bonds, respectively. The pi*(sigma) interaction with both the half-occupied d(z)2 orbital on the copper (eta(1)) and the d(xz) orbital on the iron (eta(2)), provides an effective superexchange pathway for strong antiferromagnetic coupling between the metal centers.  相似文献   

15.
Described are studies directed toward elucidating the controversial chemistry relating to the solution phase reactions of nitric oxide with the iron(II) porphyrin complex Fe(TPP)(NO) (1, TPP = meso-tetraphenylporphinato2-). The only reaction observable with clean NO is the formation of the diamagnetic dinitrosyl species Fe(TPP)(NO)2 (2), and this is seen only at low temperatures (K(1) < 3 M(-1) at ambient temperature). However, 1 does readily react reversibly with N2O3 in the presence of excess NO to give the nitro nitrosyl complex Fe(TPP)(NO2)(NO) (3), suggesting that previous claims that 1 promotes NO disproportionation to give 3 may have been compromised by traces of air in the nitric oxide sources. It is also noted that 3 undergoes reversible loss of NO to give the elusive nitro species Fe(TPP)(NO2) (4), which has been implicated as a powerful oxygen atom transfer agent in reactions with various substrates. Furthermore, in the presence of excess NO2, the latter undergoes oxidation to the stable nitrato analogue Fe(TPP)(NO3) (5). Owing to such reactivity of Fe(TPP)(NO2), flash photolysis and stopped-flow kinetics rather than static techniques were necessary for the accurate measurement of dissociation equilibria characteristic of Fe(TPP)(NO2)(NO) in 298 K toluene solution. Flash photolysis of 3 resulted in competitive NO2 and NO dissociation to give Fe(TPP)(NO) and Fe(TPP)(NO2), respectively. The rate constant for the reaction of 1 with N2O3 to generate Fe(TPP)(NO2)(NO) was determined to be 1.8 x 10(6) M(-1) s(-1), and that for the NO reaction with 4 was similarly determined to be 4.2 x 10(5) M(-1) s(-1). Stopped-flow rapid dilution techniques were used to determine the rate constant for NO dissociation from 3 as 2.6 s(-1). The rapid dilution experiments also demonstrated that Fe(TPP)(NO2) readily undergoes further oxidation to give Fe(TPP)(NO3). The mechanistic implications of these observations are discussed, and it is suggested that NO2 liberated spontaneously from Fe(P)(NO2) may play a role in an important oxidative process involving this elusive species.  相似文献   

16.
A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.  相似文献   

17.
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).  相似文献   

18.
Reaction of the d9-d9 Ni(I) monochloride dimer, [(IPr)Ni(mu-Cl)]2 (1), with NaN(SiMe3)2 and LiNHAr (Ar = 2,6-diisopropylphenyl) gives the novel monomeric, 2-coordinate Ni(I) complexes (IPr)Ni{N(SiMe3)2} (2) and (IPr)Ni(NHAr) (3). Reaction of 2 with Cp2Fe+ results in its 1-e- oxidation followed by beta-Me elimination to give a base-stabilized iminosilane complex [(IPr)Ni(CH3){kappa1-N(SiMe3)=SiMe2.Et2O}][BArF4] (6). Oxidation of 3 gives [(IPr)Ni(eta3-NHAr)(THF)][BArF4] (4), which upon loss of THF affords dimeric [(IPr)Ni(N,eta3:NHC6iPr2H3)]2[BArF4]2 (5).  相似文献   

19.
Vibrational properties of the five-coordinate porphyrin complexes [M(TPP)(Cl)] (M = Fe, Mn, Co) are analyzed in detail. For [Fe(TPP)(Cl)] (1), a complete vibrational data set is obtained, including nonresonance (NR) Raman, and resonance Raman (RR) spectra at multiple excitation wavelengths as well as IR spectra. These data are completely assigned using density functional (DFT) calculations and polarization measurements. Compared to earlier works, a number of bands are reassigned in this one. These include the important, structure-sensitive band at 390 cm(-1), which is reassigned here to the totally symmetric nu(breathing)(Fe-N) vibration for complex 1. This is in agreement with the assignments for [Ni(TPP)]. In general, the assignments are on the basis of an idealized [M(TPP)]+ core with D(4h) symmetry. In this Work, small deviations from D(4h) are observed in the vibrational spectra and analyzed in detail. On the basis of the assignments of the vibrational spectra of 1, [Mn(TPP)(Cl)] (2), and diamagnetic [Co(TPP)(Cl)] (3), eight metal-sensitive bands are identified. Two of them correspond to the nu(M-N) stretching modes with B(1g) and Eu symmetries and are assigned here for the first time. The shifts of the metal sensitive modes are interpreted on the basis of differences in the porphyrin C-C, C-N, and M-N distances. Besides the porphyrin core vibrations, the M-Cl stretching modes also show strong metal sensitivity. The strength of the M-Cl bond in 1-3 is further investigated. From normal coordinate analysis (NCA), force constants of 1.796 (Fe), 0.932 (Mn), and 1.717 (Co) mdyn/A are obtained for 1-3, respectively. The weakness of the Mn-Cl bond is attributed to the fact that it only corresponds to half a sigma bond. Finally, RR spectroscopy is used to gain detailed insight into the nature of the electronically excited states. This relates to the mechanism of resonance enhancement and the actual nature of the enhanced vibrations. It is of importance that anomalous polarized bands (A(2g) vibrations), which are diagnostic for vibronic mixing, are especially useful for this purpose.  相似文献   

20.
Cao Y  Du Z  Li W  Li J  Zhang Y  Xu F  Shen Q 《Inorganic chemistry》2011,50(8):3729-3737
Reaction of Ln(OAr(1))(3)(THF)(2) (Ar(1)= [2,6-((t)Bu)(2)-4-MeC(6)H(2)] with carbodiimides (RNCNR) in toluene afforded the RNCNR coordinated complexes (Ar(1)O)(3)Ln(NCNR) (R = (i)Pr (isopropyl), Ln = Y (1) and Yb (2); R = Cy (cyclohexyl), Ln = Y (3)) in high yields. Treatment of 1 and 2 with 4-chloroaniline, respectively, at a molar ratio of 1:1 yielded the corresponding monoguanidinate complex (Ar(1)O)(2)Y[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (4) and (Ar(1)O)(2)Yb[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (5). Complexes 4 and 5 can be prepared by the reaction of Ln(OAr(1))(3)(THF)(2) with RNCNR and amine in toluene at a 1:1:1 molar ratio in high yield directly. A remarkable influence of the aryloxide ligand on this transformation was observed. The similar transformation using the less bulky yttrium complexes Y(OAr(2))(3)(THF)(2) (Ar(2) = [2,6-((i)Pr)(2)C(6)H(3)]) or Y(OAr(3))(3)(THF)(2) (Ar(3) = [2,6-Me(2)C(6)H(3)]) did not occur. Complexes Ln(OAr(1))(3)(THF)(2) were found to be the novel precatalysts for addition of RNCNR with amines, which represents the first example of catalytic guanylation by the lanthanide complexes with the Ln-O active group. The catalytic activity of Y(OAr(1))(3)(THF)(2) was found to be the same as that of monoguanidinate complex 4, indicating 4 is one of the active intermediates in the present process. The other intermediate, amide complex (Ar(1)O)(2)Ln[(2-OCH(3)-C(6)H(4)NH)(2-OCH(3)-C(6)H(4)NH(2))] (6), was isolated by protonolysis of 4 with 2-OCH(3)-C(6)H(4)NH(2). All the complexes were structurally characterized by X-ray single crystal determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号