首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold nanoparticles with an average diameter of approximately 8 nm (Au approximately 15,000) were irradiated with a tightly focused pulse laser at 355 nm in an aqueous solution of sodium dodecyl sulfate (SDS). Transient absorption spectra of the solution were measured at 25-100 ns after the laser irradiation. The observed transient absorption around 720 nm is assignable to the 2p <-- 1s transition of solvated electrons produced via multiple ionization of the gold nanoparticles. The nascent charge state of the gold nanoparticles was estimated from the transient absorbance. The dependence of the charge state on the SDS concentration shows a gradual increase from approximately +60 to approximately +70 in the 2 x 10(-4) to 3 x 10(-4) M range and an abrupt increase up to approximately +710 at the critical micelle concentration (CMC) of SDS, 8 x 10(-3) M. TEM measurements after laser irradiation reveal that the gold nanoparticles fragment into Au(approximately 1000) at a SDS concentration of 3 x 10(-4) M, whereas they are significantly dissociated into Au(approximately 100) above the CMC. The observed correlation between the nascent charge states and the extent of size reduction of the gold nanoparticles after the laser treatment indicates that the size reduction is caused by the Coulomb explosion of the highly charged gold nanoparticles. The mechanism of laser-induced size reduction is quantitatively discussed based on the liquid drop model.  相似文献   

2.
DNA and gold nanoparticles are co-immobilized at a gold electrode through elaborate self-assembly processes. This configuration has proven to be useful as a sensor for phenothiazine drugs, taking advantage of the well-known, relatively large surface area of gold nanoparticles and the strong intercalation between dsDNA and phenothiazine drugs. This modified electrode has demonstrated good sensitivity and stability towards the oxidation of two model phenothiazine drugs: promethazine and chlorpromazine. A linear dependence between the concentration of phenothiazine drugs and the peak current is observed, with a concentration range of 2.0 x 10(-5)-1.6 x 10(-4) M and 1.0 x 10(-5)-1.2 x 10(-4) M, and a detection limit of 1.0 x 10(-5) M and 7.0 x 10(-6) M, for promethazine and chlorpromazine, respectively.  相似文献   

3.
Seed-mediated growth of gold nanoparticles on glassy carbon (GC) surfaces was developed. The field emission scanning electron microscopy (FE-SEM) and electrochemical characterization confirmed the effective attachment of gold nanoparticles on GC surface with such a wet-chemical method. The as-prepared gold nanoparticles attached glassy carbon electrode (Au/GCE) presented excellent catalytic ability toward the oxidation of nitrite. Compared with bare GCE and planar gold electrode, the Au/GCE obviously decreased the overpotential of nitrite oxidation and improved the peak current. The catalytic current was found to be linearly proportional to the nitrite concentration in the range of 1 x 10(-5) - 5 x 10(-3) M, with a detection limit of 2.4 x 10(-6) M. The Au/GCE was successfully applied to the electrochemical determination of nitrite in a real wastewater sample, showing excellent stability and anti-interference ability.  相似文献   

4.
This work demonstrates for the first time that aurophilicity and ligand pi-acceptance ability sensitize the photoreactivity of Au(I) complexes. Photolysis of LAu(I)Cl (L = RNC or CO) complexes leads to free L, Au(III), and Au(0) photoproducts. Solutions of (p-tosyl)CH(2)NCAuCl in dichloromethane undergo significant oligomerization leading to dimers and trimers with formation constants of 1.61 x 10(3) and 6.61 x 10(3) M(-1), respectively, representing the highest values reported to date for complexes that exhibit aurophilic association in solution. The photoproduct quantum yield (Phi) varies with the LAu(I)Cl concentration in solution. For (p-tosyl)CH(2)NCAuCl, metallic gold forms with Phi = 0.0065 and 0.032 in 4.0 x 10(-5) and 4.0 x 10(-3) M dichloromethane solutions, respectively. Meanwhile, irradiation of t-BuNCAuCl primarily produces t-BuNCAuCl(3) with Phi = 0.0045 and 0.013 for 5.0 x 10(-5) and 5.0 x 10(-3) M dichloromethane solutions, respectively. For Au(CO)Cl, metallic gold forms with Phi = 0.013 and 0.065 upon irradiation of 8.0 x 10(-5) and 8.0 x 10(-3) M dichloromethane solutions, respectively. Hence, *[LAuX](n) oligomeric species are more photoreactive than monomeric species. The results also demonstrate intuitive control of Phi via modulation of the pi-acceptance ability of L, as both follow CO > (p-tosyl)CH(2)NC > (alkyl)NC in LAuCl, a trend that is also commensurate with the relative long-term photosensitivity of the corresponding solids and solutions. A new method for preparing stable small gold nanoparticles is described based on the fundamental findings above. Thus, photolysis of different concentrations of LAuX in solutions containing a primary amine-terminated dendrimer leads to clear solutions exhibiting tunable visible plasmon absorptions of gold nanoparticles; these solutions maintain their colors and stability indefinitely. TEM measurements for representative samples prepared by photolysis of (p-tosyl)CH(2)NCAuCl solutions give rise to spherical nanoparticles as small as 5 nm.  相似文献   

5.
The values of the rate constants for the reactions of the sulfate (2.5 x 10(9) M(-1) s(-1)) and hydrogen phosphate (2.2 x 10(8) M(-1) s(-1)) radicals with silica nanoparticles are obtained by flash photolysis experiments with silica suspensions containing S(2)O(8)(2-) or P(2)O(8)(4-), respectively. The interaction of these radicals with the silica nanoparticles leads to formation of transients, probably adsorbed sulfate and hydrogen phosphate radicals, with absorption maxima at around 320 and 350 nm, respectively. A different mechanism takes place for the interaction of the less oxidizing dithiocyanate radicals with the silica nanoparticles. These radicals selectively react with the dissociated silanol groups of the nanoparticles with a rate constant at 298.2K of 7 x 10(7) M(-1) s(-1) (per mol of SiO(-) groups), and there is no evidence for their adsorption at the surface. All the results are discussed in terms of the Smoluchowski equation and redox potential of the inorganic radicals.  相似文献   

6.
Zhao J  Zhu X  Li T  Li G 《The Analyst》2008,133(9):1242-1245
Although different kinds of film materials and some modification techniques are applied for the development of protein-film electrochemistry, the design of a more ordered adsorption platform with improved sensitivity is still required. Here we employ single-strand DNA (ssDNA)-functionalized gold nanoparticles as scaffolds for the construction of a multilayered uniform self-assembled structure via the hybridization of complementary ssDNA. After adsorbing with native conformation onto the uniformly built electrode, cytochrome c responded very well in voltammetry experiments. The peak currents increase with the addition of the number of gold nanoparticle layers, which indicates that the multilayer gold nanoparticles not only provide a compatible microenvironment for the protein to undergo direct electron transfer reactions but also amplify the electrochemical signals by increasing the binding sites for the protein immobilization. Furthermore, ultra-sensitive detection of cytochrome c by using this multilayer gold nanoparticle-modified electrode is carried out. The linear range is from 2 x 10(-9) to 1 x 10(-7) M with a detection limit of 6.7 x 10(-10) M.  相似文献   

7.
Reactions of chlorine radicals might play a role in aqueous aerosols where a core of inorganic components containing insulators such as SiO2 and dissolved HUmic-LIke Substances (HULIS) are present. Herein, we report conventional flash photolysis experiments performed to investigate the aqueous phase reactions of silica nanoparticles (NP) and humic acid (HA) with chlorine atoms, Cl*, and dichloride radical anions, Cl2*-. Silica NP and HA may be taken as rough models for the inorganic core and HULIS contained in atmospheric particles, respectively. Both Cl* and Cl2*- were observed to react with the deprotonated silanols on the NP surface with reaction rate constants, k +/- sigma, of (9 +/- 6) x 10(7) M(-1) s(-1) and (7 +/- 4) x 10(5) M(-1) s(-1), respectively. The reaction of Cl* with the surface deprotonated silanols leads to the formation of SiO* defects. HA are also observed to react with Cl* and Cl2*- radicals, with reaction rate constants at pH 4 of (3 +/- 2) x 10(10) M(-1) s(-1) and (1.2 +/- 0.3) x 10(9) M(-1) s(-1), respectively. The high values observed for these constants were discussed in terms of the multifunctional heterogeneous mixture of organic molecules conforming HA.  相似文献   

8.
A laser-based double beam absorption detection system for aggregation immunoassays has been developed. The assay was based on the aggregation of gold nanoparticles that are coated with protein antigens in the presence of their corresponding antibodies. The aggregation of the gold nanoparticles results in an absorption change that is monitored at 635 nm using the double beam spectrometer. The noise level of the spectrometer is 1x10(-6)arbitrary units. This corresponds to a tenfold improvement in comparison to commercial absorption detectors and is comparable with previously reported more complicated laser-based absorption spectrometers. The dye Nile-Blue-A was used to test the analytical performance of the system. A limit of detection of 3x10(-8 )M Nile-Blue-A was observed. The relative standard deviation between consecutive measurements was lower than 1.5%. The system is suitable for field applications of aggregation-based immunoassays.  相似文献   

9.
Li S  Li X  Xu J  Wei X 《Talanta》2008,75(1):32-37
It was found that gold nanoparticles with different sizes could enhance the chemiluminescence (CL) of the luminol-NaIO4 system in alkaline solution. The most intensive CL signals were obtained with gold nanoparticles in diameter of 4 nm and the CL intensity increased linearly with the concentration of gold nanoparticles. The studies of UV-vis spectra, CL spectra, effects of concentrations of luminol and periodate solution were carried out to explore the CL enhancement mechanism. Catechol, hydroquinone and resorcinol were found to inhibit the CL signals of the luminol-NaIO4 reaction catalyzed by gold nanoparticles, which made it applicable for the determination of these polyphenols. Under the selected experimental conditions, the detection limits (3sigma) were in the range of 2.1 x 10(-9) to 1.0 x 10(-10) g ml(-1), the relative standard deviation (R.S.D., n=11) were in the range of 1.7-2.9%. The method has been successfully applied to the determination of catechol in tap water and synthesized samples with satisfactory results.  相似文献   

10.
N-(3-Aminopropyl)-N'-methyl-4,4'-bipyridinium is coupled to tiopronin-capped Au nanoparticles (diameter ca. 2 nm) to yield methyl(aminopropyl)viologen-functionalized Au nanoparticles (MPAV(2+)-Au nanoparticles). In situ electrochemical surface plasmon resonance (SPR) measurements are used to follow the electrochemical deposition of the bipyridinium radical cation modified Au nanoparticles on an Au-coated glass surface and the reoxidation and dissolution of the bipyridinium radical cation film. The MPAV(2+)-functionalized Au nanoparticles are also employed for the amplified SPR detection of NAD(+) and NADH cofactors. By SPR monitoring the partial biocatalyzed dissolution of the bipyridinium radical cation film in the presence of diaphorase (DP) NAD(+) is detected in the concentration range of 1x10(-4) M to 2x10(-3) M. Similarly, the diaphorase-mediated formation of the bipyridinium radical cation film on the Au-coated glass surface by the reduction of the MPAV(2+)-functionalized Au nanoparticles by NADH is used for the amplified SPR detection of NADH in the concentration range of 1x10(-4) M to 1x10(-3) M.  相似文献   

11.
2-Mercapto- and 4-mercaptopyridine (2- and 4MPy) react with the [Fe(CN)(5)(H(2)O)](3-) complex, forming the S-coordinated [Fe(CN)(5)(2MPy)](3-) and the N-coordinated [Fe(CN)(5)(4MPy)](3-) complexes. The rates of formation and dissociation of the [Fe(II)(CN)(5)(2MPy)](3-) complex were determined as k(f) = 294 dm(3) mol(-1) s(-1) and k(d) = 0.019 s(-1) by means of stopped-flow technique. The equilibrium constants for the iron(II) and -(III) species were calculated as K(f)(II) = 1.5 x 10(4) mol(-1) dm(3) and K(f)(III) = 1.3 x 10(6) mol(-1) dm(3), in comparison with 2.6 x 10(5) and 3.4 x 10(4) mol(-1) dm(3), respectively, for the 4MPy isomer. In the presence of gold nanoparticles, both 2- and 4MPy can displace the stabilizing citrate species, leading to substantial aggregation in aqueous solution, as deduced from the surface-enhanced Raman spectroscopy effect and from the decay of the 520-nm plasmon band accompanied by the rise of the characteristic exciton band at 650 nm. The [Fe(CN)(5)(4MPy)](3-) complex promotes strong stabilization of the gold nanoparticles by interacting through the S atom. On the other hand, the labile [Fe(CN)(5)(2MPy)](3-) complex induces aggregation, delivering the 2MPy ligand to the gold nanoparticles.  相似文献   

12.
The dynamics of electron self-exchange between nanoparticles.   总被引:1,自引:0,他引:1  
The rate of electron self-exchange reactions between discretely charged metal-like cores of nanoparticles has been measured in multilayer films of nanoparticles by an electrochemical method. The nanoparticles are Au monolayer-protected clusters with mixed monolayers of hexanethiolate and mercaptoundecanoic acid ligands, linked to each other and to the Au electrode surface with carboxylate-metal ion-carboxylate bridges. Cyclic voltammetry of the nanoparticle films exhibits a series of well-defined peaks for the sequential, single-electron, double-layer charging of the 1.6-nm-diameter Au cores. The electron self-exchange is measured as a diffusion-like electron-hopping process, much as in previous studies of redox polymer films on electrodes. The average electron diffusion coefficient is DE = 10(+/-5) x 10(-8) cm2/s, with no discernible dependence on the state of charge of the nanoparticles or on whether the reaction increases or decreases the core charge. This diffusion constant corresponds to an average first-order rate constant kHOP of 2(+/-1) x 10(6) s(-1) and an average self-exchange rate constant, kEX, of 2(+/-1) x 10(8) M(-1) x s(-1), using a cubic lattice hopping model. This is a very large rate constant, considering the nominally lengthy linking bridge between the Au cores.  相似文献   

13.
Qi H  Zhang Y  Peng Y  Zhang C 《Talanta》2008,75(3):684-690
A homogeneous electrogenerated chemiluminescence (ECL) immunoassay for human immunoglobulin G (hIgG) has been developed using a N-(aminobutyl)-N-ethylisoluminol (ABEI) as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode (PIGE). ECL emission was electrochemically generated from the ABEI-labeled anti-hIgG antibody and markedly increased in the presence of hIgG antigen due to forming a more rigid structure of the ABEI moiety. The concentration of hIgG antigen was determined by the increase of ECL intensity at a gold nanoparticles modified PIGE. It was found that the ECL intensity of ABEI in presence of hydrogen peroxide was dramatically enhanced at gold nanoparticles modified PIGE in neutral aqueous solution and the detection limit of ABEI was 2 x 10(-14)mol/L (S/N=3). The integral ECL intensity was linearly related to the concentration of hIgG antigen from 3.0 x 10(-11) to 1.0 x 10(-9)g/mL with a detection limit of 1 x 10(-11)g/mL (S/N=3). The relative standard deviation was 3.1% at 1.0 x 10(-10)g/mL (n=11). This work demonstrates that the enhancement of the sensitivity of ECL and ECL immunoassay at a nanoparticles modified electrode is a promising strategy.  相似文献   

14.
The first detailed kinetic analysis and mechanistic interpretation of the reactions between serum albumin and the second-generation gold drug Auranofin [Et(3)PAuSATg = (triethylphosphine)(2,3,4,6-tetra-O-acetyl-1-beta-D-glucopyranosato-S-) gold(I)] and its triisopropylphosphine analogue, iPr(3)PAuSATg, in vitro are reported. The reactions were investigated using Penefsky spun columns and NMR saturation transfer methods. Under the Penefsky chromatography conditions with 0.4-0.6 mM albumin and a wide range of Et(3)PAuSATg concentrations, the reaction is biphasic. The fast phase is apparently first order in albumin with a rate constant [k(1) = 3.4 +/- 0.3 x 10(-)(2) s(-)(1)] that decreases slightly in magnitude and becomes intermediate in order at low gold concentrations, [Et(3)PAuSATg] < [AlbSH]; it accounts for approximately 95% of the Au(I) that binds. A minor, slower step [k(2) = 2.3 +/- 0.3 x 10(-)(3) s(-)(1)), which accounts for only 5% of the reaction, is also first order with respect to albumin, and zero order with respect to auranofin. For iPr(3)PAuSATg, only the first step was observed, k(1) = (1.4 +/- 0.1) x 10(-)(2) s(-)(1), and is first order in albumin and independent of the iPr(3)PAuSATg concentration. (31)P-NMR saturation transfer experiments utilizing iPr(3)PAuSATg, under equilibrium conditions, yielded second-order rate constants for both the forward (1.2 x 10(2) M(-)(1) s(-)(1)) and the reverse (3.9 x 10(1) M(-)(1) s(-)(1)) directions. A multistep mechanism involving a conformationally altered albumin species was developed. Albumin domain IA opens with concomitant Cys-34 rearrangement, allowing facile gold binding and exchange, and then closes. In conjunction with the steady-state approximation, this mechanism accounts for the different reaction orders observed under the two set of conditions. The rate-determining conformational change of albumin governs the reaction as monitored by the Penefsky columns. Rapid second order exchange of R(3)PAuSATg at the exposed Cys-34 residue is observed under the NMR conditions. The mechanism predicts that under physiological conditions where [Et(3)PAuSATg] is 10-25 &mgr;M, the reaction will be second order and rapid with a rate constant of 8 +/- 2 x 10(2) M(-)(1) s(-)(1). The Penefsky spun columns revealed a previously unreported and novel binding mechanism, association of auranofin in the pocket of albumin-disulfide species, which was confirmed by Hummel-Dreyer gel chromatographic techniques under equilibrium conditions. This albumin-auranofin complex (AlbSSR-Et(3)PAuSATg) is weakly bound and readily dissociates during conventional gel exclusion chromatography.  相似文献   

15.
A feasible method to fabricate glucose biosensor was developed by covalent attachment of glucose oxidase (GOx) to a gold nanoparticle monolayer modified Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of ferrocyanide followed and confirmed the assemble process of biosensor, and indicated that the gold nanoparticles in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. CV performed in the presence of excess glucose and artificial redox mediator, ferrocenemethanol, allowed to quantify the surface concentration of electrically wired enzyme (Gamma(E)(0)) on the basis of kinetic models reported in literature. The Gamma(E)(0) on proposed electrode was high to 4.1 x 10(-12) mol.cm(-2), which was more than four times of that on electrode direct immobilization of enzyme by cystamine without intermediate layer of gold nanoparticles and 2.4 times of a saturated monolayer of GOx on electrode surface. The analytical performance of this biosensor was investigated by amperometry. The sensor provided a linear response to glucose over the concentration range of 2.0 x 10(-5)-5.7 x 10(-3) M with a sensitivity of 8.8 microA.mM(-1).cm(-2) and a detection limit of 8.2 microM. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 4.3 mM. In addition, the sensor has good reproducibility, and can remain stable over 30 days.  相似文献   

16.
An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations.  相似文献   

17.
Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation   总被引:1,自引:0,他引:1  
Au-Ag alloy nanoparticles supported on mesoporous aluminosilicate have been prepared by one-pot synthesis using hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure. The formation of Au-Ag alloy nanoparticles was confirmed by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Although the Au-Ag alloy nanoparticles have a larger particle size than the monometallic gold particles, they exhibited exceptionally high activity in catalysis for low-temperature CO oxidation. Even at a low temperature of 250 K, the reaction rate can reach 8.7 x 10(-6) mol.g(cat.)(-1).s(-1) at an Au/Ag molar ratio of 3/1. While neither monometallic Au@MCM-41 nor Ag@MCM-41 shows activity at this temperature, the Au-Ag alloy system shows a strongly synergistic effect in high catalytic activity. In this alloy system, the size effect is no longer a critical factor, whereas Ag is believed to play a key role in the activation of oxygen.  相似文献   

18.
Creutz C  Chou MH 《Inorganic chemistry》2008,47(9):3509-3514
The binding of catechol derivatives (LH 2 = catechol, 4-methyl catechol, 4-t-butyl catechol, and dopamine) to 1- and 4.7-nm TiO2 nanoparticles in aqueous, pH 3.5 suspensions has been characterized by UV-vis spectroscopy. The binding constants derived from Benesi-Hildebrand plots are (2-4) x 10(3) M(-1) for the 1-nm nanoparticles and (0.4-1) x 10(4)M(-1) for the 4.7-nm particles. Ti(IV)L3 complexes were prepared from the same catechols. The L = methyl catechol, and dopamine complexes are reported for the first time. The TiL3 reduction potentials are not very sensitive to the nature of the catechol nor evidently are the binding constants to TiO2 nanoparticles. The intense (epsilon > or = 10(3) M(-1)cm(-1)), about 400-nm, ligand-to-metal charge-transfer (LMCT) absorptions of the nanoparticle complexes are compared with those of the TiL 3 complexes (epsilon approximately 10(4)M(-1) cm(-1)) which lie in the same spectral region. The nanoparticle colors are attributed (as are the colors of the Ti(IV)L3 complexes) to the tails of the about 400-nm LMCT bands.  相似文献   

19.
Ultrasensitive surface-enhanced Raman scattering signals of four typical analytes were observed on Ag nanoparticles from beta-silver vanadate and copper, even though the concentrations of these analytes were as low as 1 x 10(-16) M (Rhodamine 6G or crystal violet) and 1 x 10(-15) M (trinitrotoluene or bovine serum albumin).  相似文献   

20.
The well-defined one-electron steps in the voltammetry of solutions of the nanoparticles Au38(SC2Ph)24 and Au140(SC6)53 (SC2Ph = phenylethanethiolate; SC6 = hexanethiolate) enable preparation of solutions containing, for example, Au38(SC2Ph)24 and Au38(SC2Ph)24+(ClO4)- nanoparticles in known relative proportions. From these solutions can be cast dry, mixed-valent films demonstrably containing the same proportions. Electronic conduction in such mixed-valent films is shown to occur by a bimolecular electron self-exchange reaction at a rate proportional to the concentration product, [Au38][Au38+]. The observed Au38(+/0) rate constant, approximately 2 x 10(6) M(-1) s(-1), is much smaller than that previously observed for Au140(+/0) films (ca. 4 x 10(9) M(-1) s(-1); Wuelfing, W. P.; et al. J. Am. Chem. Soc. 2000, 122, 11465). To our knowledge, this is the first example of a significant size effect in metal nanoparticle electron-transfer dynamics. Thermal activation parameters for the electron-hopping conductivities of the two nanoparticles reveal that the rate difference is mainly caused by energy barriers (EA) for Au38(+/0) electron transfers that are larger by approximately 3-fold than those for Au140(+/0) electron transfers (ca. 20 vs 7 kJ/mol). Differences in pre-exponential terms in the activation equations for the two nanoparticles are a smaller contributor to the rate constant difference and can be partly ascribed to differences in tunneling distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号