首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We studied and compared the transport properties of charge carriers in bilayer graphene, monolayer graphene, and the conventional semiconductors (the two-dimensional electron gas (2DEG)). It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene. However, resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene, which do not occur in the 2DEG. Furthermore, there are tunneling and forbidden regions in the transmission spectrum for each material, and the division of the two regions has been given in the work. The tunneling region covers a wide range of the incident energy for the two graphene systems, but only exists under specific conditions for the 2DEG. The counterparts of the transmission in the conductance profile are also given for the three materials, which may be used as high-performance devices based on the bilayer graphene.  相似文献   

2.
高场下界面势垒对双层有机器件复合发光的影响   总被引:17,自引:0,他引:17       下载免费PDF全文
以高场作用下载流子对三角势垒的Fowler-Nordheim隧穿理论为基础,建立了双层有机电致发光器件中载流子的输运和复合发光模型.计算并讨论了所加电压与界面势垒对器件的复合电流及其复合效率的影响.该理论模型很好地解释了实验现象,并进一步证实了电场对复合区域的调制作用. 关键词: 有机电致发光 双层器件 界面势垒  相似文献   

3.
4.
《Physics letters. A》2014,378(30-31):2226-2229
We applied the scattering approach to studying the transport properties of charge carriers through single layer graphene in the presence of a time-periodic potential. Using the method, expressions for the second-quantized current operator, conductivity and shot noise are obtained. The results obtained in this study demonstrate that the applied external field provides sidebands for charge carriers to tunnel through the graphene, and these sidebands changed the transport properties of the system. The results obtained in this study might be of interest to basic understanding of photon-assisted tunneling (PAT) and designers of electron devices based on graphene.  相似文献   

5.
Magneto transport of carriers with a spin-dependent gap in a ferromagnetic-gated bilayer of graphene is investigated.We focus on the effect of an energy gap induced by the mismatch of the exchange fields in the top and bottom layers of an AB-stacked graphene bilayer. The interplay of the electric and exchange fields causes the electron to acquire a spindependent energy gap. We find that, only in the case of the anti-parallel configuration, the effect of a magnetic-induced gap will give rise to perfect spin filtering controlled by the electric field. The resolution of the spin filter may be enhanced by varying the bias voltage. Perfect switching of the spin polarization from +100% to -100% by reversing the direction of electric field is predicted. Giant magnetoresistance is predicted to be easily realized when the applied electric field is smaller than the magnetic energy gap. It should be pointed out that the perfect spin filter is due to the layer-dependent exchange energy. This work points to the potential application of bilayer graphene in spintronics.  相似文献   

6.
R. Majidi  A.R. Karami 《Molecular physics》2013,111(21):3194-3199
In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.  相似文献   

7.
以在高场作用下载流子对三角势垒的Fowler Nordheim隧穿理论为基础 ,建立了双层有机电致发光器件载流子的输运与复合发光模型。求出了稳态下电荷载流子的复合发光与电压和界面势垒的函数关系式 ,计算并讨论了所加电压和阳极区与阴极区厚度之比 (Lh/Le)对复合发光的影响。该理论模型很好地解释了电场对复合区域的调制作用。  相似文献   

8.
M Bati  S Sakiroglu  I Sokmen 《中国物理 B》2016,25(5):57307-057307
A theoretical study of resonant tunneling is carried out for an inverse parabolic double-barrier structure subjected to an external electric field. Tunneling transmission coefficient and density of states are analyzed by using the non-equilibrium Green's function approach based on the finite difference method. It is found that the resonant peak of the transmission coefficient, being unity for a symmetrical case, reduces under the applied electric field and depends strongly on the variation of the structure parameters.  相似文献   

9.
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.  相似文献   

10.
杭阳  吴文志  于进  郭万林 《中国物理 B》2016,25(2):23102-023102
Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes.These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanicalelectric devices.  相似文献   

11.
周畅  龚蕊  冯小波 《物理学报》2022,(5):157-165
层间扭转角度是对石墨烯物理性质宽波段可调谐的一个新参量.本文采用2°<θ<15°扭转角度下的连续近似模型,获得了不同扭转角度双层石墨烯分别在有、无电场下的能带结构,通过电子-光子相互作用跃迁速率,计算模拟了范霍夫奇点附近电子带内跃迁和带间跃迁所引起的光学吸收谱.结果表明,在无外加电场时,带间跃迁吸收峰的位置随着扭转角度的增大而发生从红外到可见光波段的蓝移,且吸收系数增大,带内跃迁的光学吸收系数相对于带间跃迁高出2个数量级;而存在外加电场时,两个范霍夫奇点在波矢空间的位置发生偏移,带间跃迁吸收峰发生分裂,且两个分裂的吸收峰位置随着电场强度的不断增大而反向行进.上述研究结果对石墨烯材料在光电器件方面的应用有一定指导作用.  相似文献   

12.
赵小明  吴亚杰  陈婵  梁颖  寇谡鹏 《中国物理 B》2016,25(11):117303-117303
In this paper,we study the quantum properties of a bilayer graphene with(asymmetry) line defects.The localized states are found around the line defects.Thus,the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel.By adding a bias potential along the direction of the line defects,we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Biittiker theory,and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene.This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering.  相似文献   

13.
Ferroelectric polarization can be switched by an external applied electric field and may also be reversed by a mechanical force via flexoelectricity from the strain gradient.In this study,we report the mechanical writing of an epitaxial BiFeO3(BFO)thin film and the combined action of an applied mechanical force and electric field on domain switching,where the mechanical force and electric field are applied using the tip of atomic force microscopy.When the applied force exceeds the threshold value,the upward polarization of the BFO thin film can be reversed by pure mechanical force via flexoelectricity;when an electric field is simultaneously applied,the mechanical force can reduce the coercive electric field because both the piezoelectricity from the homogeneous strain and the flexoelectricity from strain gradient contribute to the internal electric field in the film.The mechanically switched domains exhibit a slightly lower surface potential when compared with that exhibited by the electrically switched domains due to no charge injection in the mechanical method.Furthermore,both the mechanically and electrically switched domains exhibit a tunneling electroresistance in the BFO ferroelectric tunnel junction.  相似文献   

14.
Massless Dirac fermions in monolayer graphene exhibit total transmission when normally incident on a scalar potential barrier, a consequence of the Klein paradox originally predicted by O Klein for relativistic electrons obeying the 3 + 1 dimensional Dirac equation. For bilayer graphene, charge carriers are massive Dirac fermions and, due to different chiralities, electron and hole states are not coupled to each other. Therefore, the wavefunction of an incident particle decays inside a barrier as for the non-relativistic Schr?dinger equation. This leads to exponentially small transmission upon normal incidence. We show that, in the presence of magnetic barriers, such massive Dirac fermions can have transmission even at normal incidence. The general consequences of this behavior for multilayer graphene consisting of massless and massive modes are mentioned. We also briefly discuss the effect of a bias voltage on such magnetotransport.  相似文献   

15.
The structural, electronic and dielectric properties of mono and bilayer buckled silicene sheets are investigated using density functional theory. A comparison of stabilities, electronic structure and effect of external electric field are investigated for AA and AB-stacked bilayer silicene. It has been found that there are no excitations of electrons i.e. plasmons at low energies for out-of-plane polarization. While for AB-stacked bilayer silicene 1.48 eV plasmons for in-plane polarization is found, a lower value compared to 2.16 eV plasmons for monolayer silicene. Inter-band transitions and plasmons in both bilayer and monolayer silicene are found relatively at lower energies than graphene. The calculations suggest that the band gap can be opened up and varied over a wide range by applying external electric field for bilayer silicene. In infra-red region imaginary part of dielectric function for AB-stacked buckled bilayer silicene shows a broad structure peak in the range of 75–270 meV compared to a short structure peak at 70 meV for monolayer silicene and no structure peaks for AA-stacked bilayer silicene. On application of external electric field the peaks are found to be blue-shifted in infra-red region. With the help of imaginary part of dielectric function and electron energy loss function effort has been made to understand possible interband transitions in both buckled bilayer silicene and monolayer silicene.  相似文献   

16.
Electromagnetic properties of the graphene junctions   总被引:1,自引:0,他引:1  
The directional diagram of the charge transport through a 'clean' and short monolayer graphene junction GJ exposed to an external electromagnetic field had been examined. We find that the photon-assisted resonant chiral tunneling across the monolayer graphene junction (GJ) causes an angular redistribution of the tunneling current density. The directional a.c. transport phenomena may be utilized in novel nanoelectronic devices working in the THz frequency range.  相似文献   

17.
18.
It has been revealed that, as an external dc electric field is applied to graphene with the Hubbard interaction between electrons, a spontaneous electric field perpendicular to the applied field can appear. This effect can be due to the nonequilibrium electron subsystem in graphene. The spontaneous field characteristics have been found as a function of the parameters of the problem.  相似文献   

19.
金芹  董海明  韩奎  王雪峰 《物理学报》2015,64(23):237801-237801
通过建立石墨烯的光学布洛赫方程, 研究了弱光场下的单层石墨烯超快动态光学性质. 理论研究表明在太赫兹辐射光场下由于泡利不相容和能量守恒原理使得石墨烯系统建立动态非平衡载流子并达到饱和的时间是20–200 fs, 能够在1 ps之内迅速产生光电流. 研究发现√2evF E0 t<0 和ω 分别对应入射光的强度和频率, t为时间, vF是石墨烯狄拉克点附近电子的费米速度. 研究发现光子能量?ω越大, 电极化强度以及光电流越强. 我们的理论研究结果与已有的众多实验结果一致, 表明石墨烯在超快动态光学领域尤其是太赫兹领域拥有重要的研究和应用价值.  相似文献   

20.
The electron diffusion coefficient and the electrical conductivity of a graphene bilayer in an external electric field with a strength vector directed along the graphene sheet are calculated theoretically. The evolution of the electron system is simulated using the Boltzmann kinetic equation in the relaxation-time semi-classical approximation. Analytic expressions are obtained for the electron diffusion coefficient and the electrical conductivity, and the nonlinear dependences of these quantities on the electric field are established. The dependences of these quantities on the control electrostatic potential between graphene layers are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号