首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We discuss the Higgs scenario in the minimal supersymmetric extension of the Standard Model ate +e? linear colliders operating in the c.m. energy range between 300 and 500 GeV. Besides decays of the Higgs particles into ordinary fermions and cascade decays, we analyze also decays into gaugino/Higgsinos and in particular, neutral Higgs decays into the lightest supersymmetric particles which are invisible ifR-parity is conserved. The cross sections for the various production channels of SUSY Higgs particles ine +e? collisions are discussed in detail. The lightest Higgs boson cannot escape detection, and in major parts of the MSSM parameter space all five Higgs particles can be observed.  相似文献   

2.
Nowadays, in the MSSM, the moderate values of tan β are almost excluded by the LEP II lower bound on the mass of the lightest Higgs boson. In the next-to-minimal supersymmetric standard model (NMSSM), the theoretical upper bound on it increases and reaches a maximal value in the limit of strong Yukawa coupling, where all solutions to renormalization-group equations are concentrated near the quasifixed point. For a calculation of the Higgs boson spectrum, the perturbation-theory method can be applied. We investigate the particle spectrum within the modified NMSSM, which leads to the self-consistent solution in the limit of strong Yukawa coupling. This model allows one to get m h~125 GeV at tan β≥1.9. In the model under investigation, the mass of the lightest Higgs boson does not exceed 130.5±3.5 GeV. The upper bound on the mass of the lightest CP-even Higgs boson in more complicated supersymmetric models is also discussed.  相似文献   

3.
We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127?GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.  相似文献   

4.
P. N. Pandita 《Pramana》1998,51(1-2):169-180
A review of the Higgs and neutralino sector of supersymmetric models is presented. This includes the upper limit on the mass of the lightest Higgs boson in the minimal supersymmetric standard model, as well as models based on the standard model gauge groupSU(2) L xU(l) Y with extended Higgs sectors. We then discuss the Higgs sector of left-right supersymmetric models, which conserveR-parity as a consequence of gauge invariance, and present a calculable upper bound on the mass of the lightest Higgs boson in these models. We also discuss the neutralino sector of general supersymmetric models based on the SM gauge group. We show that, as a consequence of gauge coupling unification, an upper bound on the mass of the lightest neutralino as a function of the gluino mass can be obtained.  相似文献   

5.
We study the neutralino sector of the Minimal Non-minimal Supersymmetric Standard Model (MNSSM) where the μ problem of the Minimal Supersymmetric Standard Model (MSSM) is solved without accompanying problems related with the appearance of domain walls. In the MNSSM as in the MSSM the lightest neutralino can be the absolutely stable lightest supersymmetric particle (LSP) providing a good candidate for the cold dark matter component of the Universe. In contrast with the MSSM the allowed range of the mass of the lightest neutralino in the MNSSM is limited. We establish the theoretical upper bound on the lightest neutralino mass in the framework of this model and obtain an approximate solution for this mass.  相似文献   

6.
We study the implications of dimension five operators involving Higgs chiral superfields for the masses of neutralinos and charginos in the minimal supersymmetric standard model (MSSM). These operators can arise from additional interactions beyond those of MSSM involving new degrees of freedom at or above the TeV scale. In addition to the masses of the neutralinos and charginos, we study the sum rules involving the masses and squared masses of these particles for different gaugino mass patterns in presence of the dimension five operators. We derive a relation for the higgsino mixing mass parameter and tan β in the presence of the dimension five operators.  相似文献   

7.
A wide class of Higgs sectors is investigated in supersymmetric standard models. When the lightest Higgs boson (h  ) looks the standard model one, the mass (mhmh) and the triple Higgs boson coupling (the hhh   coupling) are evaluated at the one-loop level in each model. While mhmh is at most 120–130 GeV in the minimal supersymmetric standard model (MSSM), that in models with an additional neutral singlet or triplet fields can be much larger. The hhh coupling can also be sensitive to the models: while in the MSSM the deviation from the standard model prediction is not significant, that can be 30–60% in some models such as the MSSM with the additional singlet or with extra doublets and charged singlets. These models are motivated by specific physics problems like the μ-problem, the neutrino mass, the scalar dark matter and so on. Therefore, when h   is found at the CERN Large Hadron Collider, we can classify supersymmetric models by measuring mhmh and the hhh coupling accurately at future collider experiments.  相似文献   

8.
We consider extensions of the next-to-minimal supersymmetric model (NMSSM) in which the observed neutrino masses are generated through a TeV scale inverse seesaw mechanism. The new particles associated with this mechanism can have sizable couplings to the Higgs field which can yield a large contribution to the mass of the lightest CP-even Higgs boson. With this new contribution, a 126 GeV Higgs is possible along with order of 200 GeV masses for the stop quarks for a broad range of tan β. The Higgs production and decay in the diphoton channel can be enhanced due to this new contribution. It is also possible to solve the little hierarchy problem in this model without invoking a maximal value for the NMSSM trilinear coupling and without severe restrictions on the value of tan β.  相似文献   

9.
The Higgs sectors of supersymmetric extensions of the Standard Model have two doublets in the minimal version (MSSM), and two doublets plus a singlet in two others: with (UMSSM) and without (NMSSM) an extra U(1)′. A very concise comparison of these three models is possible if we assume that the singlet has a somewhat larger breaking scale compared to the electroweak scale. In that case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models (THDM), like the MSSM. In this approach the well-known upper mass bounds on the lightest CP-even neutral Higgs boson can be derived in a very simple and transparent way.  相似文献   

10.
We present a new global fit to precision electroweak data, including new low- and high-energy data and analyzing the radiative corrections arising from the minimal symmetry breaking sectors of the Standard Model (SM) and its supersymmetric extension (MSSM). It is shown that present data favor a Higgs mass ofO(M z):M H=76 ?50 +152 GeV. We confront our analysis with (meta) stability and perturbative bounds on the SM Higgs mass, and the theoretical upper bound on the MSSM Higgs mass. Present data do not discriminate significantly between the SM and MSSM Higgs mass ranges. We comment in passing on the sensitivity of the Higgs mass determination to the values ofα(M z) andα s(M z).  相似文献   

11.
We calculate the dominant one-loop radiative corrections arising from quark-squark loops to the mass squared matrix of theCP-even Higgs bosons in a non-minimal supersymmetric Standard Model containing two Higgs doublets and a Higgs singlet chiral superfield using one-loop effective potential approximation. We use this result to evaluate upper and lower bounds on the radiatively corrected masses of all the scalar Higgs bosons as a function of the parameters of the model. We find that the one-loop radiative corrections are substantial only for the lightest Higgs boson of the model and can push its mass beyond the reach of LEP. We also calculate an absolute upper bound on the mass of the radiatively corrected lightest Higgs boson and compare it with the corresponding bound in the minimal supersymmetric Standard Model.  相似文献   

12.
The production mechanisms and decay modes of the heavy neutral and charged Higgs bosons in the Minimal Supersymmetric Standard Model are investigated at future e + e ? colliders in the TeV energy regime. We generate supersymmetric particle spectra by requiring the MSSM Higgs potential to produce correct radiative electroweak symmetry breaking, and we assume a common scalar mass m0, gaugino mass m1/2 and trilinear coupling A, as well as gauge and Yukawa coupling unification at the Grand Unification scale. Particular emphasis is put on the low tan β solution in this scenario where decays of the Higgs bosons to Standard Model particles compete with decays to supersymmetric charginos/neutralinos as well as sfermions. In the high tan β case, the supersymmetric spectrum is either too heavy or the supersymmetric decay modes are suppressed, since the Higgs bosons decay almost exclusively into b and τ pairs. The main production mechanisms for the heavy Higgs particles are the associated AH production and H +H? pair production with cross sections of the order of a few fb.  相似文献   

13.
We investigate the one-loop effect of new charged scalar bosons on the Higgs potential at finite temperatures in the supersymmetric standard model with four Higgs doublet chiral superfields as well as a pair of charged singlet chiral superfields. In this model, the mass of the lightest Higgs boson h is determined only by the D-term in the Higgs potential at the tree-level, while the triple Higgs boson coupling for hhh can receive a significant radiative correction due to nondecoupling one-loop contributions of the additional charged scalar bosons. We find that the same nondecoupling mechanism can also contribute to realize stronger first order electroweak phase transition than that in the minimal supersymmetric standard model, which is definitely required for a successful scenario of electroweak baryogenesis. Therefore, this model can be a new candidate for a model in which the baryon asymmetry of the Universe is explained at the electroweak scale.  相似文献   

14.
We consider a particular supersymmetric extension of the standard model involving a light singlet and explainingM Weak?M Planck naturally, without detailed assumptions about a GUT or supergravity sector. Imposingm cl>45 GeV for the lightest chargino andm H1>20 GeV for the lightest Higgs scalar, the model survives all other constraints due to recent LEP results; it predicts, however, supersymmetric and Higgs particles to be seen in the near future.  相似文献   

15.
A theoretical analysis of solutions of renormalization group equations in the minimal supersymmetric standard model, which lead to a quasi-fixed point has shown that the mass of the lightest Higgs boson in these models does not exceed 94 ± 5 GeV. This implies that a considerable part of the parameter space in the minimal supersymmetric model is in fact eliminated by existing LEPII experimental data. In the nonminimal supersymmetric standard model the upper bound on the mass of the lightest Higgs boson reaches its maximum in the strong Yukawa coupling regime when the Yukawa constants are substantially greater than the gauge constants on the grand unification scale. In the present paper the particle spectrum is studied using the simplest modification of the nonminimal supersymmetric standard model which gives a self-consistent solution in this region of parameter space. This model can give m h ~ 125 GeV even for comparatively low values of β ≥ 1.9. The spectrum of Higgs bosons and neutralinos is analyzed using the method of diagonalizing mass matrices proposed earlier. In this model the mass of the lightest Higgs boson does not exceed 130.5 ± 3.5 GeV.  相似文献   

16.
The minimal supersymmetric extension of the standard model (MSSM) predicts the existence of new charged and neutral Higgs bosons. The pair creation of these new particles at the multi-TeV e + e compact linear collider (CLIC), followed by decays into standard model particles, were simulated along with the corresponding background. High-energy beam-beam effects such as ISR, beamstrahlung and hadronic background were included. We have investigated the possibility of using the ratio between the number of events found in various decay channels to determine the MSSM parameter tan β and we have derived the corresponding statistical error from the uncertainties on the measured cross-sections and Higgs boson masses.   相似文献   

17.
E. Coniavitis  A. Ferrari 《Pramana》2007,69(6):1141-1145
The minimal supersymmetric extension of the standard model (MSSM) predicts the existence of new charged and neutral Higgs bosons. The pair creation of these new particles at the multi-TeV e + e compact linear collider (CLIC), followed by decays into standard model particles, were simulated along with the corresponding background. High-energy beam-beam effects such as ISR, beamstrahlung and hadronic background were included. We have investigated the possibility of using the ratio between the number of events found in various decay channels to determine the MSSM parameter tan β and we have derived the corresponding statistical error from the uncertainties on the measured cross-sections and Higgs boson masses.   相似文献   

18.
We study a possible dark matter candidate in the framework of a minimal anomalous U(1)′ extension of the MSSM. It turns out that in a suitable decoupling limit the Stückelino, the fermionic degree of freedom of the Stückelberg multiplet, is the lightest supersymmetric particle (LSP). We compute the relic density of this particle including coannihilations with the next to lightest supersymmetric particle (NLSP) and with the next to next to lightest supersymmetric particle (NNLSP), which are assumed to be almost degenerate in mass. This assumption is needed in order to satisfy the stringent limits that the Wilkinson Microwave Anisotropy Probe (WMAP) puts on the relic density. We find that the WMAP constraints can be satisfied by different NLSP and NNLSP configurations as a function of the mass gap with the LSP. These results hold in the parameter space region where the model remains perturbative.  相似文献   

19.
Within the Minimal Supersymmetric Standard Model (MSSM) the production and decay of superpartners can give rise to backgrounds for Higgs boson searches. Here MSSM background processes to the vector boson fusion channel with the Higgs boson decaying into two tau leptons or two W-bosons are investigated, giving rise to dilepton plus missing transverse momentum signals of the Higgs boson. Starting from a scenario with relatively small masses of the supersymmetric (SUSY) particles, with concomitant large cross section of the background processes, one obtains a first conservative estimate of the background. Light chargino pair production plus two jets, lightest and next-to-lightest neutralino production plus two jets as well as slepton pair production plus two jets are identified as important contributions to the irreducible SUSY background. Light chargino and next-to-lightest neutralino production plus two jets and next-to-lightest neutralino pair production plus two jets give rise to reducible backgrounds, which can be larger than the irreducible ones in some scenarios. The relevant distributions are shown and additional cuts for MSSM background reduction are discussed. Extrapolation to larger squark masses is performed and shows that MSSM backgrounds are quite small for squark masses at the current exclusion limits.  相似文献   

20.
D. I. Kazakov 《Physics Reports》1999,320(1-6):187-198
The status of the Higgs boson mass in the Standard Model and its supersymmetric extensions is reviewed and the perspectives of Higgs searches are discussed. The parameter space of the Minimal Supersymmetric Standard Model (MSSM) is analysed with the emphasis on the lightest Higgs mass. The infrared behaviour of renormalization group equations for the parameters of MSSM is examined and infrared quasi-fixed points are used for the Higgs mass predictions. They strongly suggest the Higgs mass to be lighter than 100 or 130 GeV for low and high tan β scenarios, respectively. Extended models, however, allow one to increase these limits for low tan β up to 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号