首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 4 毫秒
1.
In this paper, an unconstrained minimization algorithm is defined in which a nonmonotone line search technique is employed in association with a truncated Newton algorithm. Numerical results obtained for a set of standard test problems are reported which indicate that the proposed algorithm is highly effective in the solution of illconditioned as well as of large dimensional problems.  相似文献   

2.
This paper presents an application of a monomial approximation method for solving systems of nonlinear equations to the design of civil engineering frame structures. This is accomplished by solving a set of equations representing the state known as fully-stressed design, where each member of the structure is stressed to the maximum safe allowable level under at least one of the loading conditions acting on it. The monomial approximation method is based on the process of condensation, which has its origin in geometric programming theory. A monomial/Newton hybrid method is presented which permits some of the design variables to be free in sign, while others are strictly positive. This hybrid method is well suited to the structural design application since some variables are naturally positive and others are naturally free. The proposed method is compared to the most commonly used fully-stressed design method in practice. The hybrid method is shown to find solutions that the conventional method cannot find, while doing so with less computational effort. The impact of this approach on the activity of structural design is discussed.  相似文献   

3.
在区间分析的基础上,对一类不等式约束的全局优化问题,给出几种新的不含全局极小的区域删除准则,提出了一个求不等式约束全局优化问题的区间算法.数值结果表明算法是可行和有效的.  相似文献   

4.
In this paper we define multisections of intervals that yield sharp lower bounds in branch-and-bound type methods for interval global optimization. A so called 'generalized kite', defined for differentiable univariate functions, is built simultaneously with linear boundary forms and suitably chosen centered forms. Proofs for existence and uniqueness of optimal cuts are given. The method described may be used either as an accelerating device or in a global optimization algorithm with an efficient pruning effect. A more general principle for decomposition of boxes is suggested.  相似文献   

5.
《Optimization》2012,61(6):641-663
In the present article rather general penalty/barrier-methods are considered, that define a local continuously differentiable primal-dual path. The class of penalty/barrier terms includes most of the usual techniques like logarithmic barriers, SUMT, quadratic loss functions as well as exponential penalties, and the optimization problem which may contain inequality as well as equality constraints. The convergence of the corresponding general primal-dual path-following method is shown for local minima that satisfy strong second-order sufficiency conditions with linear independence constraint qualification (LICQ) and strict complementarity. A basic tool in the analysis of these methods is to estimate the radius of convergence of Newton's method depending on the penalty/barrier-parameter. Without using self-concordance properties convergence bounds are derived by direct estimations of the solutions of the Newton equations. Parameter selection rules are proposed which guarantee the local convergence of the considered penalty/barrier-techniques with only a finite number of Newton steps at each parameter level. Numerical examples illustrate the practical behavior of the proposed class of methods.  相似文献   

6.
7.
《Optimization》2012,61(2):161-190
In the present article rather general penalty/barrier-methods (e.g. logarithmic barriers, SUMT, exponential penalties), which define a local continuously differentiable primal and dual path, are analyzed in case of strict local minima of nonlinear problems with inequality as well as equality constraints. In particular, the radius of convergence of Newton's method depending on the penalty/barrier-parameter is estimated. Unlike using self-concordance properties, the convergence bounds are derived by direct estimations of the solutions of the Newton equations. By means of the obtained results parameter selection rules are studied which guarantee the local convergence of the considered penalty/barrier-techniques with only a finite number of Newton steps at each parameter level. Numerical examples illustrate the practical behavior of the proposed class of methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号