首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
The potassium lanthanide double sulphates KLn(SO4)2·H2O (Ln=La, Nd, Sm, Eu, Gd, Dy) were obtained by evaporation of aqueous reaction mixtures of rare earth (III) sulphates and potassium thiocyanate at 298 K. X-ray single-crystal investigations show that KLn(SO4)2·H2O (Ln=Nd, Sm, Eu, Gd, Dy) crystallise monoclinically (Ln=Sm: P21/c, Z=4, a=10.047(1), b=8.4555(1), c=10.349(1) Å, wR2=0.060, R1=0.024, 945 reflections, 125 parameters) while KLa(SO4)2·H2O adopts space group P3221 (Z=3, a=7.1490(5), c=13.2439(12) Å, wR2=0.038, R1=0.017, 695 reflections, 65 parameters). The coordination environment of the lanthanide ions in KLn(SO4)2·H2O is different in the case of the Nd/Sm/Gd and the Eu/Dy compounds, respectively. In the first case the Ln atoms are nine-fold coordinated in contrast to the latter where the Ln ions are eight-fold coordinated by oxygen atoms. The vibrational spectra of KLn(SO4)2·H2O and the UV-vis reflection spectra of KEu(SO4)2·H2O and KNd(SO4)2·H2O are also reported.  相似文献   

2.
Syntheses, crystal structures and thermal behavior of two polymorphic forms of Ce(SO4)2·4H2O are reported. The first modification, α-Ce(SO4)2·4H2O (I), crystallizes in the orthorhombic space group Fddd, with a=5.6587(1), b=12.0469(2), c=26.7201(3) Å and Z=8. The second modification, β-Ce(SO4)2·4H2O (II), crystallizes in the orthorhombic space group Pnma, with a=14.6019(2), b=11.0546(2), c=5.6340(1) Å and Z=4. In both structures, the cerium atoms have eight ligands: four water molecules and four sulfate groups. The mutual position of the ligands differs in (I) and (II), resulting in geometrical isomerism. Both these structures are built up by layers of Ce(H2O)4(SO4)2 held together by a hydrogen bonding network. The dehydration of Ce(SO4)2·4H2O is a two step (I) and one step (II) process, respectively, forming Ce(SO4)2 in both cases. During the decomposition of the anhydrous form, Ce(SO4)2, into the final product CeO2, intermediate xCeO2·yCe(SO4)2 species are formed.  相似文献   

3.
Tren amine cations [(C2H4NH3)3N]3+ and zirconate or tantalate anions adopt a ternary symmetry in two hydrates, [H3tren]2·(ZrF7)2·9H2O and [H3tren]6·(ZrF7)2·(TaOF6)4·3H2O, which crystallise in R32 space group with aH = 8.871 (2) Å, cH = 38.16 (1) Å and aH = 8.758 (2) Å, cH = 30.112 (9) Å, respectively. Similar [H3tren]2·(MX7)2·H2O (M = Zr, Ta; X = F, O) sheets are found in both structures; they are separated by a water layer (Ow(2)-Ow(3)) in [H3tren]2·(ZrF7)2·9H2O. Dehydration of [H3tren]2·(ZrF7)2·9H2O starts at room temperature and ends at 90 °C to give [H3tren]2·(ZrF7)2·H2O. [H3tren]2·(ZrF7)2·H2O layers remain probably unchanged during this dehydration and the existence of one intermediate [H3tren]2·(ZrF7)2·3H2O hydrate is assumed. Ow(1) molecules are tightly hydrogen bonded with -NH3+ groups and decomposition of [H3tren]2·(ZrF7)2·H2O occurs from 210 °C to 500 °C to give successively [H3tren]2·(ZrF6)·(Zr2F12) (285 °C), an intermediate unknown phase (320 °C) and ZrF4.  相似文献   

4.
Two new vanadium squarates have been synthesized, characterized by infrared and thermal behavior and their structures determined by single crystal X-ray diffraction. Both structures are made of discrete, binuclear vanadium entity but in 1, [V(OH)(H2O)2(C4O4)]2·2H2O the vanadium atom is trivalent and the entity is neutral while in 2, (NH4)[(VO)2(OH)(C4O4)2(H2O)3]·3H2O, the vanadium atom is tetravalent and the entity is negatively charged, balanced by the presence of one ammonium ion. Both molecular anions are bridged by two terminal μ2 squarate ligands. 1 crystallizes in the triclinic system, space group P-1, with lattice constants a=7.5112(10) Å, b=7.5603(8) Å, c=8.2185(8) Å, α=106.904(8)°, β=94.510(10)°, γ=113.984(9)° while 2 crystallizes in the monoclinic system, space group C2/c, with a=14.9340(15) Å, b=6.4900(9) Å, c=17.9590(19) Å and β=97.927(12)°. From the magnetic point of view, V(III) binuclear species show ferromagnetic interactions at low temperatures. However, no anomalies pointing to magnetic ordering are observed down to 2 K.  相似文献   

5.
Layered lanthanide hydroxynitrate anion exchange host lattices have been prepared via a room temperature precipitation synthesis. These materials have the composition Ln2(OH)5NO3·H2O and are formed for Y and the lanthanides from Eu to Er and as such include the first Eu containing nitrate anion exchange host lattice. The interlayer separation of these materials, approximately 8.5 Å, is lower than in the related phases Ln2(OH)5NO3·1.5H2O which have a corresponding value of 9.1 Å and is consistent with the reduction in the co-intercalated water content of these materials. These new intercalation hosts have been shown to undergo facile anion exchange reactions with a wide range of organic carboxylate and sulfonate anions. These reactions produce phases with up to three times the interlayer separation of the host lattice demonstrating the flexibility of these materials.  相似文献   

6.
The compound (NpO2)2(SO4)(H2O)4 was synthesized by evaporation of a Np5+ sulfate solution. The crystal structure was determined using single crystal X-ray diffraction and refined to an R1=0.0310. (NpO2)2(SO4)(H2O)4 crystallizes in triclinic space group P-1, a=8.1102(7) Å, b=8.7506(7) Å, c=16.234(1) Å, α=90.242(2)°, β=92.855(2)°, γ=113.067(2)°, V=1058.3(2) Å3, and Z=2. The structure contains neptunyl pentagonal bipyramids that share vertices through cation-cation interactions to form a sheet or cationic net. The sheet is decorated on each side by vertex sharing with sulfate tetrahedra, and adjacent sheets are linked together through hydrogen bonding. A graphical representation of (NpO2)2(SO4)(H2O)4 was constructed to facilitate the structural comparison to similar Np5+ compounds. The prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is also discussed.  相似文献   

7.
A novel compound, [HN(C2H4)3N][(VO)2(HPO3)2(OH)(H2O)]·H2O, was hydrothermally synthesized and characterized by single crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a=11.0753(3) Å, b=17.8265(6) Å, c=16.5229(5) Å, and β=92.362(2)°. The structure of the compound consists of vanadium phosphite layers which are built up from the infinite one-dimensional chains of [(VO)(H2O)(HPO3)2]2− of octahedral VO5(H2O) and pseudo pyramidal [HPO3], and bridging binuclear fragments of [VO(OH)]2. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

8.
A new open-framework compound, [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O, (DUP-1) has been synthesized under mild hydrothermal conditions. The resulting structure consists of diprotonated DABCOH22+ (C6H14N22+) cations and occluded water molecules occupying the channels of a complex uranyl phosphate three-dimensional framework. The anionic lattice contains uranophane-like sheets connected by hydrated pentagonal bipyramidal UO7 units. [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O possesses five crystallographically unique U centers. U(VI) is present here in both six- and seven-coordinate environments. The DABCOH22+ cations are held within the channels by hydrogen bonds to both two uranyl oxygen atoms and a μ2-O atom. Crystallographic data (193 K, Mo Kα, λ=0.71073 Å): DUP-1, monoclinic, P21/n, a=7.017(1) Å, b=21.966(4) Å, c=17.619(3) Å, β=90.198(3)°, Z=4, R(F)=4.76% for 382 parameters with 6615 reflections with I>2σ(I).  相似文献   

9.
The reaction of Lu3+ or Yb3+ and H5IO6 in aqueous media at 180 °C leads to the formation of Yb(IO3)3(H2O) or Lu(IO3)3(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)3. Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoKα, λ=0.71073 Å): Yb(IO3)3, monoclinic, space group P21/n, a=8.6664(9) Å, b=5.9904(6) Å, c=14.8826(15) Å, β=96.931(2)°, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2σ(I); Lu(IO3)3, monoclinic, space group P21/n, a=8.6410(9), b=5.9961(6), c=14.8782(16) Å, β=97.028(2)°, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2σ(I); Yb(IO3)3(H2O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) Å, β=98.636(1)°, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2σ(I); Lu(IO3)3(H2O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) Å, β=98.704(2)°, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2σ(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)3(H2O) and Yb(IO3)3(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.  相似文献   

10.
Two novel vanadium selenites {[VO(OH)(H2O)](SeO3)}4·2H2O 1 and (H3NCH2CH2NH3)[(VO)(SeO3)2] 2 were synthesized by hydrothermal method and their crystal structures were determined by single-crystal X-ray diffraction. It is characterized by inductively coupled plasma (ICP), thermogravimetric (TG) and elemental analyses. Compound 1 crystallizes in the monoclinic system, space group C2/c, a=21.2250(11) Å, b=12.6309(6) Å, c=17.0249(10) Å, β=96.830(3)°, V=4531.8(4) Å3 and Z=8, R1 [I>2σ(I)]=0.0344, wR2 [I>2σ(I)]=0.119; Compound 2 crystallizes in the monoclinic system, space group P21/c, a=9.6389(4) Å, b=6.9922(3) Å, c=15.0324(5) Å, β=102.297(2)°, V=989.90(7) Å3 and Z=4, R1 [I>2σ(I)]=0.0452, wR2 [I>2σ(I)]=0.117. {[VO(OH)(H2O)](SeO3)}4·2H2O has a 1D structure constructed from the {[VO(OH)(H2O)](SeO3)} chains. (H3NCH2CH2NH3)[(VO)(SeO3)2] has a layered structure composed of alternating VO5 and SeO3 units with protonated ethylenediamine as interlayer guest.  相似文献   

11.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

12.
A new sodium hydroxygallophosphate, Na3Ga4O(OH)(H2O)(PO4)4·H2O, has been prepared by hydrothermal synthesis. Its structure has been determined from a single-crystal X-ray diffraction study. It crystallizes in the P21/c space group with the cell parameters a=9.445(2) Å, b=9.028(1) Å, c=19.209(3) Å, β=102.08(2), V=1603.4(4) Å3. Its three-dimensional framework can be described from PO4 monophosphate groups sharing their apices with original Ga4O16(OH)(H2O) tetrameric building units, which result from the assembly of one GaO4 tetrahedron, one GaO5 trigonal bipyramid and two octahedra: GaO5(OH) and GaO4(OH)(H2O). The sodium cations and one water molecule are located in tunnels running along b.  相似文献   

13.
Hydrothermal reactions of VOSO4·3H2O, CdAc2·2H2O, NiCl2·6H2O, H3PO4, and H2O yield the first example of trimetallic phosphate materials, [Ni(H2O)4]Cd(VO)(PO4)21. The single-crystal X-ray diffraction shows that its structure consists of Cd/V/O binary metal oxide lamellas decorated by PO4 tetrahedra, which are further pillared by NiO2(H2O)4 octahedra to generate a neutral 3-D framework containing two intercrossing 8-MR channels where the coordinated water molecules protrude into. Thermal and magnetic behaviors of this material were also measured. Crystal data: CdNiVP2O13H8, orthorhombic Ibca (No.73), a=7.1307(2) Å, b=18.6248(3) Å, c=14.8046(2) Å, V=1966.17(7) Å3, Z=8.  相似文献   

14.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

15.
A new phosphate compound, Mg2KNa(PO4)2·14H2O, formed in the laboratory by cyanobacteria, has been identified and its crystal structure studied with single-crystal X-ray diffraction and infrared spectroscopy. The crystal is orthorhombic with the space group Pnma and unit-cell parameters a=25.1754(18) Å, b=6.9316(5) Å, c=11.2189(10) Å, V=1957.8(3) Å3. Its structure can be viewed as stacking of three types of layers along the a-axis in a sequence ABCBABCB…, where layer A is composed of Mg1(H2O)6 octahedra and Na(H2O)6 trigonal prisms, layer B of two crystallographically distinct PO43− tetrahedra (designated as P1 and P2), and layer C of Mg2(H2O)6 octahedra and highly irregular K-polyhedra formed by five H2O molecules and one O2− from the P2 tetrahedron. The linkage between layers is principally achieved through hydrogen bonding, except for the K-O5 bond between layers B and C. The structure of Mg2KNa(PO4)2·14H2O has many features similar to those for the struvite analogs of MgK(PO4)·6H2O (Acta Crystallogr. B 35 (1979) 11) or MgNa(PO4)·7H2O (Acta Crystallogr. B 38 (1982) 40) and represents the first struvite-type phosphate compound that contains both K and Na as univalent cations.  相似文献   

16.
The polymeric compounds consisting of the man-made element, americium, and gold and silver dicyanides were prepared under mild hydrothermal conditions at 120 °C. It was found that the americium ion and the transition metal ions are interconnected through cyanide bridging in the compounds. Given the similarities in the radii of americium and neodymium, crystals of the latter were also characterized for comparison purposes. The four compounds are isostructural and crystallize in the hexagonal space group, P63/mcm, with only slight differences in their unit cell parameters. Crystallographic data (MoKα, λ=0.71073 Å): Am[Ag(CN)2]3·3H2O (1), a=6.7205(10) Å, c=18.577(3) Å, V=726.64(19), Z=2; Am[Au(CN)2]3·3H2O (2),a=6.666(2) Å, c=18.342(3) Å, V=705.9(4), Z=2; Nd[Ag(CN)2]3·3H2O (3), a=6.7042(4) Å, c=18.6199(14) Å, V=724.77(8), Z=2; and Nd[Au(CN)2]3·3H2O (4), a=6.6573(13) Å, c=18.431(4) Å, V=707.2(2), Z=2. The coordination around the Am and/or Nd consists of six N-bound CN groups resulting in a trigonal prismatic arrangement. Three capping oxygen atoms of coordinated water molecules complete the tricapped trigonal prismatic coordination environment, providing a total coordination number of nine for the f-elements. Raman spectroscopy, which compliments the structural analyses, reveals that the four compounds display strong signals in the νCN stretching region. When compared with KAg(CN)2 or KAu(CN)2, the νCN stretching frequencies for these compounds blue-shift due to bridging of the dicyanometallate ions with the f-element ions. There is subsequent reduction in electron density at the cyanide center. Compared with the silver systems, the νCN frequency appears at higher energy in the gold dicyanide complexes. This shift is consistent with the structural data where the carbon-nitrogen bond distance is found to be shorter in the gold dicyanides.  相似文献   

17.
Two new layered gallophosphates Co(en)3·Ga3P4O16·5H2O (1) and trans-Co(dien)2·Ga3P4O16·3H2O (2) have been hydrothermally synthesized using the racemic mixture of chiral metal complex Co(en)3Cl3 and Co(dien)2Cl3 as the structure-directing agent, respectively. Their structures are determined by single-crystal X-ray diffraction analysis and further characterized by X-ray power diffraction, ICP, elemental, and TG analyses. The structures of 1 and 2 consist of vertex-linking GaO4 and PO3(=O) tetrahedral units forming macroanionic [Ga3P4O16]3− sheets with a 4.6-net. The 4.6-net is characteristic of chiral [3.3.3] propellane-like structural motifs. The sheets of 1 stack in an ABAB sequence, with a pair of enantiomers of chiral Co(en)33+ cations residing in the interlayer region. The sheets of 2 array in a helical fashion with an ABCDEF stacking sequence, with only one enantiomer of chiral Co(dien)23+ cations residing in the interlayer region. Structural elucidation of 1 and 2 reveals that there exist stereo-specific correspondence between the metal complex template and the structure of the inorganic host. Crystal data: 1, Co(en)3·Ga3P4O16·5H2O, orthorhombic, Pnna (No. 52), a=8.6618(2) Å, b=21.6071(5) Å, c=13.7426(4) Å, Z=4, R1=0.0337 (I>2σ(I)), wR2=0.0985 (all data); 2, Co(dien)2·Ga3P4O16·3H2O, hexagonal, P6522 (No. 179), a=8.5152(7) Å, b=8.5152(7) Å, c=63.278(8) Å, R1=0.1183 (I>2σ(I)), wR2=0.2864 (all data) and Z=6.  相似文献   

18.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

19.
A tetrasodium dimagnesium dihydrogen diphosphate octahydrate Na4Mg2(H2P2O7)4·8H2O was synthesized. It crystallizes in the monoclinic system, space group P21/m (no. 11), Z=4, and its unit-cell parameters are: a=8.0445(3) Å, b=11.5244(5) Å, c=9.0825(4) Å, β=113.1401(2)°, V=774.28(6) Å3. The structure was determined by single-crystal X-ray diffractometry and refined to a R index of 0.0294 (wR=0.0727) for 1878 independent reflections with I>2σ(I). The framework is made by the alternance of layers of MgO6/NaO6 octahedra and double tetrahedra PO4 along b-axis. Such layers are characterized by the presence of strong hydrogen bonds. (H2P2O7)2− anions exhibit bent eclipsed conformation. Besides, the crystal was analyzed by FT-IR and micro-Raman vibrational spectroscopy. No coincidences of the majority of the Raman and infrared spectra bands of Na4Mg2(H2P2O7)4·8H2O confirms a centrosymmetric structure of this material. The vibrational spectra confirm the bent POP configuration in this compound.  相似文献   

20.
The first organically templated one-dimensional lanthanum sulfate [C4N3H16][La(SO4)3]·H2O has been prepared employing hydrothermal methods in the presence of diethylenetriamine (DETA). The structure was determined by single-crystal X-ray diffraction (XRD). The title compound crystallizes in the triclinic system, space group P-1 (No.2) with cell parameters M=551.30, a=8.2773(7) Å, b=9.5660(6) Å, c=10.4363(6) Å, α=105.661(2)°, β=102.849(3)°, γ=104.376(3)°, V=732.72(9) Å3, Z=2, R=0.0285, wR=0.0778. The structure consists of infinite linear chains. The chains are held together by hydrogen bond interactions involving the hydrogens of the amine and the framework oxygens. The as-synthesized product is characterized by powder XRD, inductive couple plasma analysis and thermogravimetric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号